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ABSTRACT

’/ A VLSI architecture for computing the discrete Fourier transform (DFT) using the Wino-

grad Fourier transform algorithm (WEFTA) is presented. This architecture is an address-
less, routed, bit-serial scheme that directly maps an N-point algorithm onto silicon. The
architecture appears to be far less costly than systolic schemes for implementing the
WI'TA, and faster than current FFT devices for similar transform sizes. The nesting
method of Winograd is used for partitioning larger transformations into several circuits.
The advantage of this partitioning technique is that it allows using circuits that are all of
the same type. However, the number of input/output pins of each circuit is higher than
with some other approaches like, for example, the prime factor algorithm. The design of
a 20-point DFT circuit with logic diagrams of its major cells is presented. The gate array
circuit has becn sent for fabrication in a 0.7gm CMOS technology. Five circuits intercon-
nected together will compute 60-point complex'transforms at a rate of one transformation
every 0.53us. ' Foi

RESUME =~

-

Une architecture VLSI pour le calcul de la transformation discrete de Fourier en utilisant
I'algorithme de transformation de Fourier de Winograd (ATFW) est présentée. Cette
architecture est un arrangement routé, bit-sériel, et sans adresses qui transpose directe-
ment, un algorithme de taille donnée sur silicium. L’architecture s’avere étre beaucoup
moins coliteuse que les systemes systoliques pour implanter 'ATFW, et plus rapide que les
dispositifs courants de transformation rapide de Fourier pour des longueurs de transfor-
mation comparables. La méthode de “tissage” de Winograd est utilisée pour fragmenter
des transformations plus longues sur plusieurs circuits distincts. L’avantage de cette
technique de fragmentation est qu’elle permet d’utiliser des circuits tous du méme type.
(‘ependant, le nombre de broches d’entrée/sortie de chaque circuit est plus élevé qu’avec
d’autres approches comme, par exemple, I'algorithme de factorisation premier. La con-
ception d'un circuit de transformation discrete de Fourier pour 20 points est présentée.
avee des diagrammes logiques pour ses principales cellules. Le circuit a été soumis pour
fabrication avec une matrice de portes dans un procédé CMOS de 0.7um. Cing civcuits
interconnectés ensemble pourront calculer des transformations complexes de 60 points a

nne vitesse de une transformation a toutes les 0.53ys
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EXECUTIVE SUMMARY

Electronic warfare systems rely more and more on the development of digital processing
to increase their signal handling capability. This trend stems in good part from the
convenience and low cost of semiconductor devices and the emergence of very large scale
integration (VLSI) systems. The object of this research is to investigate new means of
computing the discrete Fourier transform (DFT) at very high speed using VLSI circuits.
The discrete Fourier transformation is a widely used algorithm for switching between the
time and frequency representations of sampled waveforms.

The performance of DFT circuits and boards is determined by the transforma-
tion algorithm and by the architecture used to implement the algorithm. In commercial
products, the algorithm and architecture are chosen for their flexibility, in an attempt to
facilitate many applications. Practically all commercial devices use the FF'T algorithm.
which allows varyving the transform size N across a wide range of values and implementing
the division by N of the inverse transformation with an inexpensive bit shift.

Unfortunately, commercial DFT circuits and boards don’t deliver the through-
puts that are needed in many electronic warfare applications. Higher throughputs can be
obtained by using several DFT processors in parallel, but this generally leads to compli-
cated and expensive implementations, which are limited by the need for multiplexers and
demultiplexers, increased bulk, lower reliability, and higher power consumption.

This report presents a DFT architecture aimed at applications where DI'Ts
must. be computed at very high speeds, and where the number of points N is fixed and
not too large. typically a few hundreds or less. This architecture is not based on the
FI'T. Instead it uses an algorithm that was invented by Winograd in 1976. The Winograd
Fourier transform algorithm (WFTA) computes the same transformation as the F'I'T. and
uses fewer multiplications. In the proposed architecture, an N-point WFTA is mapped
directly onto a VLSI circuit using an addressless, bit-serial scheme. The smaller number
of multiplications vields silicon area savings which can be traded for a higher throughput
or a larger transform size N. Due to the complicated indexing scheme of the WI'TA.
the layout requires substantial routing between its arithmetic cells and the architecture
is called routed.

If a layonut turns out to be too large to fit on a single circuit. the architecture
can he partitioned into several identical circuits using the nesting method. The nesting
method has also been invented by Winograd. As higher length algorithmis are constructed.
the nesting method uses less multiplications than other construction algorithms. including

the prime factor algorithm.




To validate the routed architecture and the partitioning strategy, a VLSI circuit
has been designed at DREO and sent to a silicon foundry. The CMOS circuit contains
55000 gates and can compute by itself 20-point complex DFTs. The nesting method allows
the interconnection of five circuits to compute 60-point complex DFTs. Assuming 16-bit
input samples, the predicted speed of 1.8 million transformations per second is about
three to ten times higher than that of commercial chip sets*®. In the prototype circuit, the
adders have been organized in layers and interconnected by software. The 48 multipliers
have been carefully designed to minimize their gate count without compromising their
speed and accuracy. The circuit can accept samples of any precision in fixed-point two’s
complement format, and output coefficients with up to 10 bits of accuracy.

The Air Force Institute of Technologyin in Dayton, Ohio, is also developing
Winograd Fourier transform circuits. At this time, 15-, 16-, and 17-point DFT circuits
are being designed and tested. The three full-custom circuits are slightly slower than the
DREOQO gate array, but they are more accurate because their multipliers have more stages.
The three circuits are meant to be interconnected using the prime factor algorithin to
forin part of a 4080-point DFT machine.

The WFTA and the routed architecture are not without disadvantages. ['irst, as
the transform size is increased, the routing gradually grows and may become impractical
to handle. Second, the complex indexing scheme of the WFTA restrains the flexibility
with respect to N. Lastly, the WFTA favors using values of N that are not powers of 2:
hence the division by N appearing in the inverse transformation does not reduce to a bit
shift like in the FFT.

The WFTA should not be viewed as a replacement for the FI'T, but rather
as a complementary algorithm with its own advantages and inconveniences. which may
find use in different applications. The WFTA and the routed architecture are attractive
for applications requiring high throughput, cost effective DF'T computation for moderate
transform sizes. For instance, the routed architecture is currently being considered at
DRIEQ for processing radar pulses in real-time upon interception by radar electronic

support measures ([ESM) systems.

*The fastest available chip set, to the anthars’ knowledge. is mannfactiured by Honevwell and cousists
of 12 GaAs crcuits.

P'Ihe authors whish to thank Mark A. Mehalic, AFIT, for the information provided.
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1.0 INTRODUCTION

The introduction by Winograd [1],{2], and Agarwal and Cooley [3], of new, short length
discrete Fourier transformation algorithms requiring fewer multiplications than the fast
Fourier transform [4],[5] stirred interest in the signal processing community. In combina-
tion with his high speed algorithms, Winograd proposed a nesting method for constructing
algorithms of higher lengths. The algorithms obtained by means of this nesting method
are known as Winograd Fourier transform algorithms (WFTA) [6].

Another method, which is based on the Good-Thomas prime factor algorithm
(PEFA) [7],[8]. has been proposed by Kolba and Parks [9] for computing long discrete
Fourier transforms with Winograd’s short length algorithms. The PFA and nesting meth-
ods can be combined, making it possible to obtain in-place and in-ocder algorithms [10].
However, only the nesting method of Winograd is considered in this report, mostly because
it minimizes the number of multiplications.

Apart from their theoretical value, which was immediately recognized, \Wino-
grad’s algorithms have found very few applications since their introduction. One of the
underlying difficulties with these algorithms is that their additions are nested in a compli-
cated and irregular manner. Early results showed that WFTA software sometimes runs
faster. or slower. than the FFT on computers like the IBM 370 [6].[9],[11]-[14]. Various
hardware architectures for the WFTA and its variants have been proposed, but, to the
authors’ knowledge, none has been demonstrated using a complete prototype. As a result.
the 'F'T is still considered as the algorithm of choice in the practical world.

The widespread perception that Winograd's algorithms do not lend themselves
well to either hardware or software realizations is now being challenged. The change stems
from the emergence of new computer architectures, higher component densities on VIL.SI
circnits, and more powerful compilers and computer-aided design tools. For instance. Lu.
Cooley and Tolimieri have recently shown [15] that variants of the WEFTA can excente
more efficiently than the FFT on RIS computers having a “floating-point multiply-add”™
feature. Aloisio et al. have implemented the PFA on hvpercube computers [16]. At this
time. the Air Force Institute of Technology is developing 15-. 16-. and [7-point WEFTA
integrated cirenits [17].[13]1.

The argument for using the WEFTA instead of the FF'T in high-speed VLSI re-

alizations is simple. Since the WFTA requires fewer multiplications than the FI'T. and

"After work on the present report was well under way, the authors became acquainted with the AT
project and were pleasantly surprised by the simularities between the AFIT and DREO circuits.




multipliers in VLSI are very expensive?, the WFTA should yield smaller, more cost-

eff  "va VLSI realizations. Figure | shows the minimum number of multiplications in the
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ligure 1: Number of non-trivial real multiplications in the FFT and Winograd algorithms
as a function of the number of points .V.

WIETA and FFI?. as a function of the number of points A'. It is easily verified that the
WI'TA requires two to three times fewer multiplications than the FFT for N > 60. The
difference increases with N, as the WEFTA requires a number of multiplications propor-
tional to NV, while for the FFT the proportionality is to N log(NV) [20]. The number of
additions remains approximately the same.

[n this report, we examine the implementation of the WFTA in VLSI form for the
high-speed calculation of moderate length (less than a few hundred points) discrete Fourier
transforms. We propose a new VLSI architecture with detailed designs of its different
hardware cells. To put this in perspective, a quick review of some of the architectures
proposed in the past is useful. In 1980, Zohar [21] proposed running the WFTA on a

dedicated. address-based machine with one multiplier and two adders. In 1982, Ward and

2 A C'MOS multiplier of length Iy bits typically contains about 21, times more gates than an adder.

YIn Fig. 1. ilie number of arithmetic operations in the radix-2 FFT has been reduced by exploitung
the symmetries in the sine and cosine functions. and by implementing the complex multiplications with
three real multiplications and three real additions. The complex multiplication algorithm with three real
muinplications can be found in [19. Sect. 3.7.2]




Stanier [22] designed a systolic architecture for the WEFTA; such architectures produce
regular layouts and allow very high clock rates [23],{24]. Then, in 1983, MacLeod and
Bragg [25] suggested directly mapping the algorithm’s data flow onto hardware, using
bit-serial arithmetic. In 1985, Costello [26] compared the PFA to other techniques for
radar beam forming and concluded that the former was much cheaper to implement with
dedicated hardware. At about the same time, Ward, McCanny, and McWhirter [2.].[28],
and shortly after, Owens and Ja'Ja [29], introduced more systolic architectures for the
WFETA. Lastly, in 1988, Linderman et al. [18] presented the design of three full-custom
WEFTA circuits destined for a 4080-point PFA realization. The operations in the circuits
are carried out bit-serially, while the data transfers between the circuits and the main
memory are bit-parallel.

Pursuing the idea of MacLeod and Bragg, we propose an addressless, bit-scrial
architecture that directly maps the WFTA of interest onto a VLSI circuit. Probing further.
we examine in detail the hardware cells and their interconnections, and actually provide
the specifications of a 20-point WFT circuit that has been sent for fabrication in a 0.7 um
“wate array” ('MOS technology. We found that for implementing the WI'TA | an approach
like MacLeod and Bragg’s yields the same performance as a systolic architecture, but at a
lower cost {30}, A 20-point WET circuit. for example, contains about 47000 gates and fits
on a moderately large gate array. By comparison, the systolic architecture of Ward ¢t «l.
would require 300000 gates® and a much larger die size. Hence, the layout of our circuit
ends up being more compact, despite some irregular portions having complicated routing.
From a design effort standpoint, the 20-point WFT circuit’s schematics were manually
entered in the chip manufacturer’s design system in seven man-weeks. Interconneccting
the adders took only a small portion of that time. As early as next year, some chip

il

manufacturers will add to their design software sets a “logic synthesis” tool that will
directly read logic specifications, and eliminate the error-prone and often tedious task of
drawing the schematics®. This will make routed architectures more attractive in general.

The novelty of the proposed architecture lies at the system level, wherc the
WI'T circuits exchange data for computing discrete Fourier transforms of higher lengths.
[nstead of relving on the standard PFA for partitioning the transformation, we took
Winograd’s nesting method. This allowed us to design a 20-point WE'T circuit such that

by assembling five devices, they can compute 60-point transforms®. Including this feature

*See Section 7.0 for gate count equations.

*The anthors are grateful to A. Boubguira. LSI Logic Co. of Canada, for the information provided.

“Another possibility, in fact, would be to use a single device five times in succession. This discussion
ignores the possible reduction in hardware which can be obtained for lower transformation rates.




in the 20-point WFT circuit increased the gate count by 16%’ and added 80 pins to the
package. The advantage of this approach is that it can be implemented with circuits
all of the same type. Also, the number of multipliers that are used is always kept to a
minimum, thus as higher density processes become available, a multi-circuit configuration
can be directly combined to fit on a single integrated circuit. The disadvantage of the
approach is that it requires more pins than the PFA for inter-circuit data exchanges.
This is the price for minimizing the number of multipliers in the data path and for using

circuits that are identical.

Table 1: Comparison of the proposed WEFTA architecture to commercial FFT devices..

Device(s) Circuit  Clock N Throughput Fiure

Count Rate (samples/s) of Merit
L6:4280/81 (LSI Logic)™ [31] 3 40MHz 64 4.3 x 108 L4
A11102 (Austek Microsystems) [32] 1 40MHz 64 2.5 x 10° 2.5
HFFP (Honeywell)! 12 250MHz 64  41.7 x 10° 3.5
a66110/210 (array Microsystems) [33] 2 40MHz 64  13.1 x 10° 6.6
PDSP16510 (Plessey Semicond.) [34] 1 40MHz 64  16.4 x 10° 16.4
WIE'T circuit (DREQO) 3 30MHz 60 111.1 x 10° 22.2

* This is a floating point chip set. All the others are fixed point.
f I'his is a GaAs chip set (advance information 10/91). All the others are CMOS.

For comparing the proposed WFTA architecture to current FFT schemes, we
use four FFT chip sets that are commercially available®. It is assumed that the discrete
Fourier transformations are on complex data. Table 1 gives the number of circuits in each
set. the clock rate, and the throughput rate in complex samples/s for a transformation
of length V. Also shown is a simple but intuitive “figure of merit” obtained by dividing
the throughput by the number of circuits. The higher the figure of merit is, the better.
Of the FFT circuits, the PDSP16510 by Plessey Semiconductors is the only one that has
a figure of merit close to that of the WFT circuit. However, the PDSP16510 contains
at least twice as many gates as the WET circuit, and costs about four times as much.
Compensating for silicon area and speed discrepancies wo._ld increase the figure of merit
of the WFT circuit to 75, i.e. at about four times the value of the top FFT device’.

"The gate count of the circuit therefore adds up to 47 000 + 8 000 = 55 000 gates.

*The FFT can also be computed on digital signal processors [35], but at slower speeds.

“To obtain the higher figure of merit, one could fit the 175000 gates required by the 60-point WFTA
on two larger or higher-density circuits and raise their clock rate to 40MHz.




On the other hand, the FFT devices offer more flexibility with regards to the number of
points of the transformation. The WFT circuit is limited to two transformation sizes: 20
and 60 points'®. This comparison illustrates well that the FFT and WFTA offer different
advantages and limitations, and are therefore suited to different applications.

This report is addressed to scientists who are studying the high-speed calculation
of the discrete Fourier transform, to engineers who design hardware for that computation,
i.e. VLSI circuits, and possibly to users of this hardware. No specific mathematical
background is required. The hardware descriptions are very detailed, mostly because the
only way to obtain accurate gate counts, and cost estimates, is by unfolding a complete
logic design. It is our hope that the logic cells presented here will be helpful in other
bit-serial circuits. S. Martineau did most of the cell design work. P. Lavoie proposed the
VLSI architecture and compared it to other schemes from speed and cost standpoints.

The report is organized as follows. In the next section, the discrete Fourier
transformation, Winograd’s short length algorithms and the systolic architecture of Ward.
McCanny, and McWhirter are briefly reviewed. The routed architecture is introduced in
Section 3.0 using a 5-point transformation example. Then, in Section 4.0, the logic design
of a 20-point WETA circuit based on the routed architecture is presented in detail. A
technique for laying out and interconnecting the adders is proposed. Multipliers with small
gate counts are introduced. The partitioning of a higher length 60-point algorithm iu five
circuits is explained. This partitioning follows a novel approach based on Winograd's
nesting method. Internal scaling of the data to prevent overflows is included in all the
cells. The section ends with a recapitulation of the various cells that are required and
their gate counts. In Section 5.0, computer simulations of the 20-point WFTA circuit are
presented. The accuracy of the Fourier coefficients produced by the circuit is measured.
Practical considerations like the testability, clock speed and pin requirement are examined
in Section 6.0. Lastly, in Section 7.0, the routed architecture is compared to the systolic
architecture of Ward et al. and to a straightforward FFT design from a cost point of view.
The 20- and 60-point WFTA algorithms are derived in Appendix A. The twiddle factors
that must be stored into the WFT circuit are listed in Appendix B. The logic symbols
appearing in the figures are described in Appendix C.

""In many high speed applications this is not much of an inconvenience since the number of points .V
15 fixed.




2.0 WARD, McCANNY AND McWHIRTER’S SYSTOLIC
ARCHITECTURE

2.1 THE DISCRETE FOURIER TRANSFORMATION

The N-point discrete Fourier transform synthesis equation is

N-1
Ap= > a. W™, k=0,1,...,N-1, (1)
n=0
with
W = ¢-327/N) , (2)
where {Ao, Ay,...,An_1} denotes the discrete Fourier transform (DFT) of a sequence
of \V evenly-spaced, possibly complex samples {ao,a;,...,an_,}. The operation of com-

puting the DFT of a sequence is called the discrete Fourier transformation. The original
sequence can be recovered from its DFT by the analysis equation
p V=1
n=—% > AW™  n=0,1,. ,N-1. (3)
N =
This operation is called the inverse discrete Fourier transformation. It is very similar in
form: to the discrete Fourier transformation.
The inverse discrete Fourier transformation can be implemented using a forward
DIT device by reversing the order of the outputs 1 through N — 1 and dividing their
value by V. If N = ¢" and numbers are represented in g-ary digits, then the division by
N reduces to shifting the point r positions. When using an FFT, N is usually a power of
two, and inverse transforms are thus easily computed. Winograd algorithms for N = 27
have been derived (36]-(38], but they require more multiplications and additions than the
FFT for N > 32.

2.2 WINOGRAD’S SHORT LENGTH DISCRETE FOURIER TRANSFOR-
MATION ALGORITHMS

Each of the short length discrete Fourier transformation algorithms introduced by Wino-
grad consists of a sequence of additions, followed by multiplications, and by more addi-
tions. Winograd has given algorithms for 2-, 3-, 4-, 5-, 7-, 8-, 9-, and 16-point DFTs. and
algorithms for other lengths can be found in [36]-[40].

For example, the 5-point algorithm producing the DFT {A,, 4, A2, A3, A4} of

an input sequence {ag, a1, as, as, a4} consists of the following operations:

6




Additions: -
s1 = a; + a4 S = a; — a4 $3 = a3 + as S4 = az — ay

S5 = 81 + 83 8¢ = 8) — $3 S7 = 82 + 84 38 = 85 + ag
Multiplications:
o . _ +
me = 1- Ss m; = (cosu 2cosZ’u -1)- Ss
my = (C—"ﬂ‘—‘zﬁ’s—?—” —1) 8¢ m3 = i(sinu+sin2u)-s; with u = —2¢
my = isin2u - 57 ms = i(sinu — sin 2u) - 54
Additions:
Sg = mo + ™My $10 = Sg + M2 311 = 89 — M2 812 = M3 — My
S13 = my + Mms S14 = S10 + S12 S15 = S10 — S12 S16 = S11 + 313
317 = S11 — 313

Oulput:

Ao=mpg Ay =814 Ax=s16 Asz=s17  Ay=3555

The algorithm contains 17 complex additions'! and 6 complex multiplications.
The fixed factor in each multiplication is either purely real or imaginary, never a complex
number. This is a property of Winograd’s algorithms. Each complex multiplication can

therefore be computed using just two real multiplications instead of three or four.

2.3 WARD, McCANNY AND McWHIRTER'’S SYSTOLIC ARCHITEC-
TURE

The architecture presented here has been proposed by Ward, McCanny and
McWhirter [27],[28]. It has been chosen over other architectures [22],[29] because it is
complete, simple, and representative of the group. This architecture falls into the “sys-
tolic” category, and hence it has several attractive properties [23],[24]. However it is rather
inefficient in its use of the silicon area, especially for large transform sizes. This draw-
back actually motivated us to develop a different, more compact architecture, which is
presented in the next section. Since the systolic architecture provides general insight into
th= implementation of Winograd’s algorithms, and might be useful for some applications,
it is described first.

In the systolic architecture, the number of multipliers is kept small, whereas the

pumber of adders is allowed to grow proportionally to N?. This allows computing the

""The term additions as used here refers to both the addition and the subtraction operations of the
algornithm.
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additions using four regular arrays of cells. For implementing an N-point transformation,
the “systolic” arrays are programmed in such a way that some cells are active, i.e. compute
an addition, while others are simply used as delay units. The arrays compute far more
additions than required by Winograd’s algorithms, and the resultant layouts are therefore
not as compact as they could be. On the other hand, since the layout regularity is very
high, both the design time and the risk of a design error are reduced. The clock rate of
the arrays is independent of their size, and very high computational speeds can be reached
even with very large arrays [24].

The architecture accepts and processes the N input samples in parallel, and is
called bit-serial because the samples enter and travel in the circuit in a serial fashion, i.e.
bit by bit. The data rate is inversely proportional to the number of bits per sample. High
processing rates are achieved by computing all the N Fourier coefficients in parallel. The
architecture requires 2N input and 2N output pins, for the complex data samples and
Fourier coefficients, respectively.

The architecture is best understood when an N-point transformation is written

in the form:

A =Z(XaxYb). (4)

The input samples and DFT coefficients form the vectors a and A, respectively. X is an
M x N (row x column) matrix and Z is-an N x M matrix, where M denotes the number
of complex multiplications of the N-point transformation. The matrices X and Y contain
only +1, —1 and 0 values. It is through the matrix-vector products that the additions
of Winograd’s algorithm are carried out. The product Yb can be precalculated so as to
form a set of M twiddle factors '? having either a purely real or imaginary value.

The 5-point transformation [2], for example, can be calculated using (4) where

-1 1 -l
-1 1 0 )

S O O o O -
O = = e a =
o
o
J
—

12These twiddle factors play a role similar to the twiddle factors in the FFT, but they differ from the
latter in number and value.




( 1

cosutcosu __ 1
2
gcosu—cosﬂu _ 1;
(Yb)' = L with u = &,
i(sinu + sin 2u)
1sin2u
i(sinu — sin2u)
and
1 0 0 0 0 O
1 1 1 1 -1 0
Z=1]1 1 -1 0 1 1
1 1 -1 0 -1 -1
I 1 1 -1 1 0

The systolic architecture would yield an implementation with 2M = 12 multi-
pliers, and 4MN = 120 array cells, of which 84 would be performing additions. When
considering that Winograd’s algorithm uses just 34 additions, the systolic architecture
appears inefficient. However, it is simple and very regular.

The number of gates in one array cell is now examined. Using the cell func-
tionality described in [27], a logic diagram, such as the one shown in Fig. 2, can be
designed. This particular design contains 84 gates if it were implemented using a popular
CMOS library [41] with flip-flops featuring clear and scan. Based on this design, the total
number GG, of gates in the four systolic arrays is:

G, =336 NM . (3)

The main drawback of this architecture is that the systolic arrays requires a
number of cells that is proportional to N2. As a result, the architecture quickly becomes

prohibitively expensive as N increases.

3.0 A ROUTED ARCHITECTURE FOR THE WFTA

In this section, a cost-effective bit-serial architecture for the WFTA is presented. Fven
though this architecture lacks some of the elegant properties of the systolic architec-
tures [24], it should yield circuits having smaller areas, and hence allow discrete Fourier
transformations of higher lengths.

In the proposed architecture, an N-point WFTA is mapped directly onto silicon.

with a minimum of modifications. This follows the idea of MacLeod and Bragg [25]. The
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I"igure 2: Logic diagram of one systolic array cell. The logic symbols are described in
Appendix C.

resultant layout exhibits little regularity, as wires of various length connect the adders.
Because the architecture requires routing between the adders, we refer to it as the routed
architecture.

The adders can be organized in layers. The layers can then be stacked and
interconnected using a “channel routing” software. Assume that the Winograd nesting
method (2] is used for constructing an N-point algorithm from two smaller N;-, and N,-
point algorithms. Let N = N; N, and N, and N, be relatively prime. The adders in the
:V-point implementation are now examined. Let L; and L, denote the number of layers
of adders, and A; and A, denote the largest number of adders per layer, in the N;-, and
V,-point implementations, respectively. Let M, denotes the number of multiplications in
the .V-point implementation. The number of layers (L) and the largest number of adders
per layer (A) in the NV-point implementation are given by:

L = Li+Ly, (6)
A max [N, Ay, M1 Ay . (7)

The number of layers grows proportionally to log(/N), whereas the number of
adders per layer grows proportionally to N. The total number of adders is therefore

proportional to Vlog(/N). Note that this does not take into account the routing between
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and through the layers, and the silicon area itself asymptotically grows at a higher rate'?.
Nevertheless, for the values of N considered here, the adders occupy more area than the
interconnections, and their number is relevant.

In the routed architecture, the adders are divided into four groups. Two groups
compute the real and imaginary additions before the multiplications; the two others com-

pute the additions that follow the multiplications. Figure 3 shows a floorplan for the

Real part of Imaginary part of
input samples input samples
ﬂ/N H/N
Real Imaginary
additions additions
U,M U,M
Real multiplications Imaginary muitiplications
with real or imaginary with real or imaginary
( twiddle factors ) ( twiddle factors
Real Imaginary
additions additions
U/N U/N
Real part of Imaginary part of
DFT coefficients DF‘Igcoe icients

Figure 3: Floorplan of the routed architecture.

routed architecture, where the real parts of the input samples are processed on one side.
and the imaginary parts on the other. The two sides are identical, except in the multi-
pliers where some twiddle factors differ in sign. The computations of the two side can

thus be carried out using separate circuits, provided that approximately M/2 pins are

" Thompson [42] has shown with an asymptotical analysis that the total area of any circuit computing
the DFT in fixed time must grow proportionally to V2.
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available for data exchanges between the circuits and that the twiddle factors are pro-
grammable. In other words, two identical WFT circuits designed to compute DI'Ts of
real-valued input sequences could therefore be connected together and compute DIFTs
of complex-valued sequences. This advantageous partitioning could not be implemented
easily with the FFT.

In a bit-serial architecture, each addition can be implemented with a single cell
of modest complexity. Each multiplication, on the other hand, requires a row of /,, cells,
where [,, denotes the number of bits in the multiplicand (the twiddle factor). Therefore,
for moderate transform sizes (N < 100), the multipliers generally occupy more silicon area
than the four groups of adders. For higher values of N, the routing between the layers
of adders occupies a higher percentage of the silicon area and may cause difficulties. It
should be pointed out that the systolic architectures would also become impractical at
that point.

The attainable throughput is equal to the clock rate divided by the number of
bits per sample (/;). In order to get a high clock rate (30MHz or higher), the “critical
path™ of the circuit, i.e. the electrical path with the longest propagation delay, must be
minimized. In the routed architecture, the critical path may either be in the adders or
in the multipliers. Indeed, the wires between the layers of adders may be of significant
length and exhibit a large capacitance, having a significant effect on the circuit’s speed.
The adders should therefore be pipelined so that the data transfers between the different
layers occur simultaneously. Inside each bit-serial multiplier, there is a carry chain where
pipelining should also be applied. Pipelining shortens the critical path, but increases the
latency of the circuit.

Figure 4 shows a block diagram of the routed architecture for Winograd's 5-
point algorithm. Samples enter bit-serially at the top. They traverse the first two groups
of adders (left and right), are multiplied by the twiddle factors, and traverse two more
groups of adders. The bit-serial DFT coefficients then exit the circuit. Flip-flops have
been inserted after every layer of adders, and at every three stages of multiplier cells, for
pipelining.

An important issue when implementing the discrete Fourier transformation is
the partitioning: can a computational load too large for a single device be distributed
among several devices at a reasonable cost? A partitioning technique based on Winograd's
nesting method 1s now proposed for the routed architecture.

Using Winograd’s nesting method, an N = V; N;-point algorithm can be con-
structed from two smaller V;-, and N;-point algorithms, conditional to N; and N, being

velatively prime. Let A, and A; denote the number of additions, and M; and M, denote
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[Fignre 4: The routed architecture for Winograd’s 5-point algorithm.



the number of multiplications, in the N;-, and N,-point algorithms, respectively. The

constructed N-point algorithm then contains:
M = MM, multiplications (38)

and

A= min[NgAl + A/IIAQ, M2A1 + N1A2] additions. (9)

By examining the nesting method [2], the structure of the N-point algorithm appears
as a “core” of M; N;-point transformations “surrounded” by A;.V; additions. The core
is likely to be the expensive part because it contains all the multiplications. A natural
way of partitioning it is between the N;-point transformations. Thus a circuit computing
one Vp-point transform and all the A;/N; surrounding additions could compute .V, of
the .V Fourier coefficients. Placing M, such circuits side by side would yield an V-point
transformation machine. The appeal of this approach is twofold. First, the number of

'Y, The disadvantages arc that

multipliers is minimal. Second, the circuits are identica
the 1, Nz surrounding additions are duplicated M, times (once per circuit). Section 1.3
gives an example of the partitioning technique for Ny = 3 and .V, = 20. The example

shows that modifications can be applied to the architecture for reducing its cost.

4.0 LOGIC DESIGN OF A 20-POINT WINOGRAD FOURIER
TRANSFORMATION CIRCUIT

This section presents the design of a 20-point Winograd Fourier transformation circuit.
The architecture chosen for implementing the circuit is the routed architecture prescntod
in Section 3.0. We focus our attention on the design at the logic level. and give schematic
dhagrams of the cells required for building the circuit. The design has been given to a
manufacturer for fabrication. Samples shall be available by the first quarter of 1992,

The Winograd Fourier transformation circuit, or WFET circuit, is designed to
bit-serially accept and produce data in two’s complement form. Surprisingly. bit-serial
arithmetic components capable of accepting data in two's-complement notation are hard
to tind in the literature. Moreover, the few that we found generally turned out to he
expensive in the number of gates. Most of the basic cells presented in this section are
thevefore either of our own, or the result of several modifications and iterations of a
published design.

This section has six parts. First, the data format convention for communicating

"This 1s assuming that the twiddle factors can be programmed to suit the .V-point transformation.
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with the WEFT circ it is described. The cells required for the additions are presented.
Then the functionality required for a 60-point multi-circuit mode is included in the circuit.
The multipliers are described in great detail. Next the position of the binary point at the
output of the circuit is examined. The different modes of the circuit are explained with
the associated control -ignals. Lastly, gate counts are given for all the cells and for the

complete circuit.

4.1 DATA FORMAT

The data format has an impact on both the accuracy of the output and on the cost of
the design. A fixed point format is cheaper to implement than a floating point. However,
if the adders and multipliers use fixed point arithmetic, then overflows might occur in
the circuit when the valid range determined by the number of bits {; is excecded. The

following four strategies can be used to deal with this problem:

I. Headroom provision: The number of bits [, is increased while keeping the sample

values constant, so only a fraction of the input range available is used.

2. Fired scaling: The outputs of some adders and multipliers are scaled down. The
least significant bit (LSB) is dropped at given stages of the computations to increase

the dvnamic range av..ilable.

3. Automatic scaling: Scaling down is automatically applied where necessary. Thus

overflows never occur. This is sometimes called “block floating point™.

\. Floating point: Lach individual data element is represented in a floating point for-

mat.

The first strategy (headroom provision) i1s the simplest. but it slows the bit-
serial circuit down since [, is increased. The second strategy (fixed scaling) is casily
implemented and can reduce the probability of overflow. However, if the data is scaled
down more than necessary. then precision will be lost at the output. Thus the sccond
strategy is best combined with the first strategy: adding headroom allows delaving the
scaling to latter stages, where the LSBs are non-significant anvways. The third strategy
(automatic scaling) is intuitively appealing because just the minimum amount of scaling
ix applied. The last strategy (floating point) is the one that provides the most information
al the output. It is more expensive than the three others.

The WFT circuit uses fixed scaling, which is fairly simple to implement. The
block floating point and floating point strategies should be considered for future imple-

mentations.




Each complex sampie has a real and an imaginary parts, whose values are rep-
resented in a fixed point, two’s complement form. The 2" complex samples all enter the
WI'T circuit synchronously, in parallel, with their real and imaginary parts on separate
input pins. The number of input pins is therefore equal to 2NV = 40. The least signif-
icant bits enter the circuit first, and the most significant bits last. Samples may be of
any length [, but must be separated by one bit, or more, of padding. The values of the
padding bits are discarded by the circuit. Along with the inputs samples, a control signal
called ~data valid ir” (DVI) indicates whether the 2V accompanying data bits belong to
samples (DVI = 1) or are simply padding bits (DVI = 0).

The 20 complex Fourier coefficients exit the WF'T circuit in parallel, on a second
set of 2V = 40 pins, after a certain delay due to the pipelining in the circuit. The output
format is similar to the input format, and a “data valid out” (DVO) signal generated by the
circuit accompanies the Fourier coeflicients. The Fourier coefficients are [; bits long. with
a binary point whose position depends on the input samples. the twiddle factors, and the
amount of “scaling”™ that is being applied. They are separated by the same number of bits
of padding as the corresponding input samples. However, the values of the padding bits
may hiave changed and should be ignored. An “overflow” signal (OFO) is produced « 1 the
clock cycle following the delivery of the most significant bits of the Fourier coefficients.
Il this signal is high (OFO = 1), then an overflow has occurred soniewhere in the circuit
and the corresponding set of Fourier coefficients is invalid. The WF'T circuit pursues its
computations regardless of overflows. An overflow in one transformation does "ot affect

the following transformations.

4.2 CELLS FOR ADDITION OPERATIONS

The 20-point WFTA' contains 108 complex (216 real) additions. These additions are
divided into two sets: the additions before the multipliers (124 real additions), and the
additions after the multipliers (92 real additions). Since the additions rcquired for the real
and imaginary data are the same, only one set of additions needs be considered. I'rom
this point. only the additions on real data are examined. It should be kept in mind that
all the circuits shown in this section are duplicated in the WET circuit.

The adders required for the “pre-raultipliers” additions can be distributed on five
tavers. Fignre 5 shows the 20 input samples ag. ap. .. .. ajg. and the adders sy.sy. .. .. S67-
organized in five horizontal lavers. The lavers are numbered from one to five, from top

to hottom. The first layer contains the adders s1 through syg whose inputs are connected

See Appendix A for the 20-poi 't WFTA.
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Figure 5: Pre-multipliers additions in a 20-point WFTA.
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only to the input samples. The second layer contains the adders whose inputs connect to
the first layer, the third layer contains adders whose inputs connect to the second layer,
and so on. Each line in Fig. 5 may represent more than one data connection.

Sometimes it is imperative to pass data across one or more layers. For instance,
on the second layer, two “through” wires allow the adders sg4 and sg7 on the fourth layer
to get some input from the first layer. The data on a through wire is always transferred
down as adders on one layer take their input only from the precedent layers. Counting
the number of adders per layer, from top to bottom, yields 20, 18, 14, 8, and 2 adders,
respectively. The 24 outputs of the adders enter into the multipliers.

The “post-multipliers” additions can be distributed on four layers. Figure 6

shows the adders and their data dependencies. From top to bottom, the layers have 14,

multipliers’ outpuls

DFT coefficents
Figure 6: Post-multipliers additions in a 20-point WEFTA.

3. 16. and 8 adders, respectively. The 20 outputs of the post-multipliers are the real parts
of the Fourier coefficients Ag, Ay, ..., A1g.

As discussed in Section 3.0, pipelining the output of the adders is recommended
for maintaining a high clock rate. Then the through wires must also be pipelined to ensure
that the partial sums are synchronized.

In order to reduce the risk of overflow, programmable scalers are used for trun-

cating the partial sums. [If the scalers on a layer are “enabled”, then the least siguificant
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bit of every sum produced by that layer is discarded, making room for the most significant
bit, and shifting the binary point by one position. Enabling or disabling the scalers thus
allows tailoring the precision and dynamic range of the WFT circuit to the statistics of
the input samples. Scalers must also be inserted along through wires.

Now that the global organization of the additions has been examined, the logic
diagrams of the five associated cells are presented. There is a padding cell, an adder,
an overflow detection cell, a subtracter, and a hold-up cell. Since the designs are mostly

self-explanatory, the explanations are brief.

4.2.1 Padding Cell

The multipliers, in order to work properly, require that the most significant bit of the
multiplicand be followed by at least one padding bit having the same value. This con-
straint can be met by making the samples go through padding cells upon their entry into

the circuit. A padding cell is shown in Fig. 7. A sample enters the cell by the input X

R

~ 3 .

Shared

AL R

DVI A

Figure 7: Logic diagram of a padding cell.

and exits by the output X

In the WFT circuit, the external DVI signal is delayed by one clock cycle with
respect to the data and becomes a “reset” signal (R) that is used directly by the arithimetic
cells. Before exiting the circuit, the data is delayed by one clock cycle with respect to the
signal R, and the latter is output as DVO. The circuit shown under the padding cell in
Iig. 7 transforms DVI into R. It is shared by all the padding cells of the circuit.

4.2.2 Adder

A bit-serial adder suitable for the WET circuit is shown in Fig. 8. The two terms entering
on X and Y are added together. The resultant sum exits on S. Scaling is implemented
through a single multiplexer. This multiplexer is controlled by a circuit shared by all the

adders on a same layver. The shared circuit also resets the carry between the additions.
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Figure 8: Logic diagram of a two’s complement adder with scaling.

Setting the signal SC high (SC = 1) scales down all the outputs of the layer. A “partial
overflow” signal (POV) is produced at every clock cycle by each adder.

4.2.3 Overflow Detection Cell

The signals POV produced by the adders of a layer are combined together in an overflow
detection cell, as shown in Fig. 9. This cell declares whether an overflow has occurred
(OVF = 1), or not (OVF = 0), in the layer.

==
POV | = A Q Q
p—— A OVF
Shared SC
R A Q - =70 '\:._..‘.
—{>o— R

A

Figure 9: Logic diagram of an overflow detection cell.
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Overflows may occur in several layers of the WFT circuit. The overflow signal
of cach layer must therefore be combined with the overflow signals of the other layers to

vield the overall OFO signal. This is done using the scan circuitry shown in Fig. 10. The

Paddmg ’LOWJ OVF7
J—l—l o}—--- rE Ty

15 delays (multipliers)

aj{ar®

........
.,

.........

Figure 10: Logic diagram of the overall overflow circuitry.

OFO signal is output one clock cycle after the MSB of the Fourier coefficients. In a large
svstemn, the WFET circuit may be preceeded by other devices that may also overflow. An
input to the overflow scan (OFI) has therefore be included in the design. Whenever a set
of samples marked with an overflow enters the WFT circuit, the corresponding Fourier

coefficients are thus automatically declared invalid.

4.2.4 Subtracter

A subtraction can be implemented either by fitting an adder with a sign inverter costing
LN gates, or by using a true subtracter. The second approach requires more design work.
but vields a cell that has fewer gates. A subtracter cell is shown in Fig. 11. Remarkably.

it has exactly the same number of gates as the adder of I'ig. 8.

4.2.5 Hold-up cell

Pipelining must be applied evenly on all the width of a layer; otherwise the partial sums
mav loose their synchronism. This is also true of scaling; otherwise the position of the
binary point may vary among the Fourier coefficients. Pipelining and scaling must there-
fore be applied to the data crossing a layer, or more, on through wires. A hold-up cell,

stuch as the one shown in Fig. 12, serves that purpose.
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4.3 CELLS FOR A 60-POINT NESTED TRANSFORMATION

In Appendix A, a 60-point algorithm is derived from a 3-point algorithm and a 20-point
algorithm. The resultant algorithm consists of a set of additions, three 20-point trans-
formations, and another set of additions. The 20-point transformations are very similar
to discrete Fourier transformations, at the exception of the twiddle factors that have dif-
ferent values. Assuming that the twiddle factors in the 20-point WEFT circuit can be
programmed to the required values, three circuits could therefore compute the “core” of
the 60-point algorithm. Pursuing this idea, the extra adders required by the 60-point
algorithm could be included in the WFT circuit. This would slightly increase the cost of
the design, but greatly improve its versatility and usefulness.

There are many ways of dividing the computational load of the 60-point trans-
formation among a set of identical devices. A three circuit configuration is probably the
most elficient in terms of silicon area. However, the data flow between the circuits would
require 240 data pins per circuit, and yield very high packaging costs. For many applica-
tions, the configuration shown in Fig. 13 with five circuits instead of three may provide a
more balanced solution. This configuration requires only 160 data pins per circuit. Three
of the circuits are used for additions and 20-point transforms: they accept the 60 complex
samples arranged in three vectors ag, a;, and aj, and produce three intermediate vectors
of results Mg, M1, and Mj. The 20-point transformations are denoted by Wy, W1, and
W,. Two circuits compute additions only: they accept Mg, My, and M, and produce
the Fourier coefficients in vectors A, and Ay. One “FIFO” circuit simply delays Mg to

produce Ag. It is not rigorously required, but has been included for convenience.

The Winograd nesting scheme, which has been used for building the 60-point
WITA. gets its indexing from the “Chinese Remainder Theorem.” The order in which
the input samples must be presented to the five circuits is therefore rather peculiar. The
veader is referred to Appendix A for explanations on how the following vectors ag, a1, as.
Aj. A;, and A; are obtained:

ag = (ag.,ap1,347,233.224,345,36,327,348, 29,330,351, 212, 333,354, 315,336,357,318,339) .

a) = (a40.21.22),243. 24,325,346, 37. 328, 349,310, 331, 352, 313, 334, 355, 21 6, 37, 358, 31 g) -
2y = (ap0-241,32.223, 344,35, 326,347 28, 329, 250, 311+ 332, 353, 314, 335, 356, 3] 7. 238, 359) -
Ap = (Ag.A21.A42.A3,A24. A5, A6, A27, A4, Ag, A30, A5 1, A12, A33, Agg, Al5. A36, Agy. Alg. Agg) .
Al = (Ag0. A1, A22,A03. A4, A25, Age. A7, A28, Agg, A10: A31. A5, A13, A34, Ass. A6, A7. Agg A g) .
Ay = (A20.A41.A2.A23,A44, A5, A6, Aa7. Ag, A2, A, A11, A3, A53, A14, A3s, Age, A17. Asg. Agg) -
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Iigure 13: Block diagram of a 60-point DFT using five circuits. Note that the Fourier
coefficients produced by the bottom left circuit run through a FIFQ circuit
just for synchronization with the other coefficients.




An economical way of implementing the extra additions that are required by
the N-point WFTA consists of using programmable cells capable of either adding or
subtracting. These cells can then be configured in agreement with the role of the circuit

they belong to.

S = X4i-Y

Shated

IMigure 14: Logic diagram of a programmable cell capable of either adding or subtracting.

A cell that can be programmed for either adding or subtracting is shown in
Fig. 14. If the control signal PR is set high (PR =1), then the cell acts as a subtracter
and produces X — Y; otherwise it produces X + Y. The usual timing and scaling control

circuit is shown under the cell.

4.4 CELLS FOR MULTIPLICATION OPERATIONS

The representation of numbers in two’s complement form, as is convenient for addition and
subtraction, complicates the multiplication. Fortunately, the problem of implementing
a bit-serial multiplier accepting two’s complement data has been addressed by several
authors. One solution consists of changing the numbers to a sign and magnitude notation,
multiplying their magnitudes with a standard bit-serial multiplier, and transforming the
result back into a correct two's complement number. The numbers can also be recoded
with ternary digits to suit Booth’s algorithm. However, a more elegant approach has been
proposed by Lvon [43], who has succeeded in modifying the original pipeline multiplier
developed by Jackson, Kaiser, and McDonald [44], which accepts positive data words only.
allowing it to do correct two’s complement multiplication. This last scheme is attractive
for a number of reasons: it is modular, i.e. for a [,-bit twiddle factor the multiplier

cousists of [, identical cells: it rounds the products to the same length as the input data;
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it computes the product at the same rate as the data is entered; and, lastly, it doesn’t
require data converters.

Lyon’s fully two’s complement multiplier can be modified to better suit the WI'T
circuit. First, it can be “re-timed” to reduce the amount of pipelining and the number of
gates. Re-timing is a technique for shortening or lengthening the critical path, and thus
the clock cycle duration, of VLSI circuits {45]. Then, the last two stages of the multiplier
can be simplified.

The two cells of the modified multiplier are shown in Fig. 15. In order to get a
multiplier of length [, the first cell must be replicated /,, — 1 times, and this row must
be terminated by the second cell. The l,-bit data X travels through the [, stages of the
multiplier from left to right, one cell per clock cycle. The [/,,-bit twiddle factor Y enters
the multiplier simultaneously with the data, and each of its bits propagates to all the cells
at once. The output Z of the last stage delivers the result, i.e. the I; most significant bits
of the product of X and Y. The data can be either shorter, equal in length, or longer than
the twiddle factors. If it is shorter, then the twiddle factors must be stored before the
multiplications and not changed.

The “partial product sum” input (PPS) of the first stage allows using an initial
offset for rounding [43]. This “initial offset” (10) is generated by the circuit that is shown
in IYig. 16. Note that all the multipliers of the WFT circuit can share a single offset
generation circuit.

Each multiplier cell has two multiplexers for selecting one twiddle factor from
a group of five possibilities. The multiplexers are controlled by the signals Co, C1, C2,
and R. If C0 =0, C1 =0, and C2 =0, then the multiplier reads its twiddle factor from Y.
The four other possibilities (TF0, TF1, TF2, and TF3) correspond to the fixed values that
are necessary for computing 20- and 60-point DFTs. Table 2 gives more detail on the
multiplexers’ control.

Appendix B provides all the twiddle factors that are required by the WFT circuit.
Note that the multiplier shown in Fig. 15 inverts the bits of the twiddle factors TF1, TF2,
and TF3. Hence the values given in appendix must be inverted before being stored in the
multiplier. The bits of TF0 are not inverted and can be stored directly. The least significant
bit must be stored into the first multiplier stage, where the multiplicands enter and the
most significant bit into the last stage, where the product exits.

The four flip-flops marked “optional delays™ in Fig. 15 allow pipelining the mul-
tipler to shorten the electrical path that otherwise runs from the PPS input of stage one
to the Z output of stage [,,. Putting the flip-flops at every stage may be unnecessary.

sinee the circuit’s critical path would then surely move somewhere else, possibly in the
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Figure 15: Logic diagram of a bit-serial multiplier cell. A master multiplier for /,,-bit
twiddle factors can be built by juxtaposing [, — I cells of type (a) with one
cell of type (b).
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Figure 16: Logic diagram of an initial offset generation circuit for the bit-serial multiplier
of Fig. 15. The signal 10 is fed into the input PPS of the first multiplier’s cell.
The same circuit can be shared by all the multipliers.

Table 2: Control of the multipliers’ multiplexers..

Co Ct €2 R Output Note

6 0 0 O Y external twiddle factor

0 0 0 1 Q stored twiddle factor

1 0 0 «x TFO fixed value for 20 point DFT

x 0 1 x TF1 fixed value for 60 point DFT (Wy)
x L 0 x TF2 fixed value for 60 point DFT (W;)
x 1 1 x TF3 fixed value for 60 point DFT (W>)

routing between the adders, or in the output driving circuits. At first glance, inserting

the flip-flops at every three stages should provide sufficient speed, and keep the cost of

the multiplers low.

The 20-point WFT circuit contains 48 multipliers that are evenly divided into

two groups. One group is fed with the real parts, and the other with the imaginary parts,

of 24 complex intermediate results. The fixed twiddle {actors are now examined further

in detail, in an attempt to reduce the gate count of the multipliers. The values of the

twiddle factors in the 24 multipliers that are fed with real numbers can be calculated

using the equations:

-pi1/2

multiplier
multiplier
multiplier
multiplier
multiplier
multiplier

-8*pi/5

A H» W NN~ O

1

((cos(u)+cos(2*u))/2-1)
((cos(u)-cos(2*u))/2)

(sin(u)+sin(2*u))
: sin(2*u)
(sin(u)-sin(2*u))




multiplier 6 : 1

multiplier 7 : ((cos(u)+cos(2*u))/2-1)
multiplier 8 : ((cos(u)-cos(2*u))/2)
multiplier 9 : (sin(u)+sin(2*u))

multiplier 10 : sin(2#u)

multiplier 11 : (sin(u)-sin(2%u))
multiplier 12 : 1

multiplier 13 : ((cos(u)+cos{2*u))/2-1)
multiplier 14 : ((cos(u)-cos(2*u))/2)
multiplier 15 : (sin(u)+sin(2%u))
multiplier 16 : sin(2*u)

multiplier 17 : (sin(u)-sin(2*u))
multiplier 18 : sin(v)

multiplier 19 : sin(v)*((cos(u)+cos(2*u))/2-1)
multiplier 20 : sin(v)=*((cos(u)-cos(2*u))/2)
multiplier 21 : sin(v)#*(sin(u)+sin(2*u))
multiplier 22 : sin(v)*sin(2x*u)

multiplier 23 : sin(v)*(sin(u)-sin(2*u))

[t is readily apparent that the twiddle factors of multipliers 0 through 5 are
identical to those of multipliers 6 through 11 and 12 through 17. Since six of the 24 values
appear three times each, thesc six values need only be stored once. Onc -an therefore
nse just 12 multipliers with twiddle factor storage (master multipliers), and complete this
set with 12 slave multipliers borrowing the twiddle factors of the first 12. The design of
a slave multiplier is straightforward. and the cells obtained are shown in Fig. 17. Now
considering the 24 muitipliers fed with imaginary numbers, the situation is the same. the
only difference being a sign inversion in the twiddle factors of multipliers 3, 4, 5. 9. 10.
(1. 15, 16, 17. 13, 19, and 20%°.

[n order to minimize the wiring length between the multipliers, every slave mul-
tiplier should be placed close to its master multiplier. The order 0, 6, 12, 18. 1. 7. 13. 19
208000020030 9015, 21,040 10016, 22,5, 11, 17, and 23, where the master multipliers are
italicized. meets this constraint. and effectively places every master multiplier between its

two slaves.

"This is correct for a 20-point transformation {TFQ). For a 60-point transformation. this is also true
for the sets TF1 and TF2; however. in TF3, it is the signs of multipliers 0, 1, 2, 6, 7. 8, 12, 13. 14, 21. 22.
and 23 that are inverted.
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4.5 POSITION OF THE BINARY POINT

T'he position p, of the binary point in the Fourier coefficients output by the WI'T circuit
is a function of its position in the input samples (p;) and in the twiddle factors (p,,), and
of the number of layers L, whose scalers are active. Define the position of the binary
point as the number of binary places between the point and the least significant bit. [or
example, the position of the binary point in “101.01” would be 2, whereas its position
in “11,.” would be —1. The position p, of the binary point in the Fourier coefficients

produced by the WFT circuit is given by:
Po=pi—Ls—(lm —pm — 1) . (10)

4.6 OPERATING MODES AND CONTROL

In this section, the WFT circuit is examined globally. Its four operating modes. which
are mutually exclusive, are described.
The first mode is a “discrete Fourier transformation” mode (DFT). This mode

allows computing 20-point DF'Ts using a single circuit, as depicted in Fig. 18. The real

DFT
AA
TFO

Figure 18: Block diagram of a WFT circuit computing 20-point transforms in its DFT
mode .

and imaginary parts of the samples, which are respectively denoted by a and a’. cnter
the circuit at the top of the diagram and first traverse a tree of adders normally used
in 60-point transformations. Since zeros are applied to the other inputs of the tree. the

exiting samples are unchanged. The samples then enter into the transformation modules

31




denoted by W and W’. The real and imaginary parts of the Fourier coefficients, which
are denoted by A and A’, exit at the bottom of the circuit.
The mode DFT is also used for computing the intermediate results Mg, M1, and

M3, in 60-point transformations. A five-cicuit configuration is shown in Fig. 19. In the 5-

ao ao ai as az a:

DFT
AA
TF1

ADD
AS

ADD
AA

Ao Al

1

Fignre 19: Block diagram of a 5-circuit array computing 60-point DFTs. The top three
circuits are in the mode DFT. The bottom two are in the mode ADD. A\ sixth
circuit (FIFO) simply delays 20 Fourier coefficients by two clock cvcles.

circuit configuration, the intermediate sets of results Mg, M1, and My, enter two circuits
that are in an “addition” mode (ADD), yielding 40 of the 60 Fourier coefficients. The
remaining 20 Fourier coefficients are obtained by delaying the 20 intermediate results in

the set Mg by two clock cycles.

The third mode of operation is a straightforward “multiplier” mode (MUL). A
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circuit in this mode provides direct input and output to 24 of its multipliers. Figure 20

shows the corresponding internal data path. On one side of the circuit, the 12 inputs x

Multipliers
|

T

Z=Xy Z =Xy

Figure 20: Block diagram of a WE'T circuit in the mode MUL.

are multiplied by the 12 inputs y to yield the 12 products z. The same computations take
place on the other side.

The last mode is a “test” mode (7ST) for validation of the WFT circuit after
fabrication. This mode is not a normal mode of operation. In this mode, all the flip-flops
in the circuit become connected through a scan chain. Their values can be shifted out of
the circuit and replaced by new values.

The programmable adders/subtracters required for 60-point transformations are
distributed on two layers and controlled by a pair signals specifying whether they must
“add and add” (AA), “add and subtract” (AS), “subtract and add” (SA), or “subtract and
subtract” (SS). Figure 19 shows the mode of each circuit (DFT or ADD), the signals con-
trolling the programmable adders/subtracters {AA, AS, or SA), and which twiddle factors
are being used.

The scalers in the two layers of programmable adders/subtracters and in the
nine layers of the 20-point transformation are controlled by a 3-bit signal that provides
cight different settings. Table 3 shows the layers which are scaled down and which are
not for each of the settings. A *1” in the table indicates that scaling is enabled. a ~(”
that it is disabled.

The internal data path of the WFT circuit is shown in Fig. 21. The picture.
which provides wire counts, may appear complicated at first. However, the routing is

straightforward and practical {or current design tools and fabrication technology.
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Figure 21: Internal data path of the WFT circuit.
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Table 3: Scaling control..

Layer Setting

01 23 45 6 7
Adders/subtracters, layer 1 0 0000 0 0 1
Adders/subtracters, layer 2 0 00 0O0O0CTI11
20-point, pre-multipliers,layerl {0 0 0 0 0 1 1 1
20-point, pre-multipliers,layer2 {0 0 0 0 1 1 1 1
20-point, pre-multipliers,layerd {0 0 0 1 1 1 1 1
20-point, pre-multipliers,layer4 {0 0 1 1 1 1 1 1
20-point, pre-multipliers,layerd |0 1 1 1 1 1 1 1
20-point, post-multipliers,layer6 {0 0 0 0 0 0 0 1
20-point, post-multipliers,layer 7{0 0 0 0 0 0 1 1
20-point, post-multipliers,layer 8 |0 0 0 0 0 1 1 1
20-point, post-multipliers,layer9{0 0 0 0 1 1 1 1

4.7 GATE COUNT

Using the logic diagrams of all the cells presented in this section, a gate count for the

entive WFT circuit is now computed. The number of cells of each type is shown in Table 4.

By following the data progression in the circuit, one finds that there are 120
padding cells, one for each data input, and each cell has 13 gates. The data then tra-
verses 80 adders/subtracters containing 44 gates each, and enter into the 20-point trans-
formation. 120 adders and 96 subtracters, containing 36 gates each, are required for that
transformation. Maintaining the synchronicity of the data path involves 204 hold-up cells
with scaling: 40 are in the two layers of programmable adders/subtracters, and 164 are
in the 20-point transformation modules. These cells are inexpensive at 13 gates each. A
55-gate overflow detection cell is required for each of the 11 layers of adders and sub-
tracters. The master and slave multipliers require 576 multiplier cells having complexities
ranging from 43 to 65 gates. They also require 360 hold-up cells containing 10 gates cach.
Then 40 hold-up cells delay the output of the data with respect to the DVO and OFQO
signals. For reconfiguring the data path to suit the various circuit modes, 40 2-to-1 and
21 3-to-1 multiplexers are required. After adding everything together, the WFT circuit
ends up containing approximately 55000 gates, and can therefore be implemented in a

moderately large gate array.
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Table 4: Cell and gate counts for the WFT circuiit..

Cell Name Count Gates/Cell Total Gates
padding cell 120 13 1560
adder/subtracter 80 44 3520
adder (with scaling) 120 36 4320
subtracter (with scaling) 96 36 3456
hold-up cell (with scaling) 204 13 2652
overflow detection cell 11 =55 605
offset generation 2 93 186
master mult. (stages 1-11) 264 65 17160
master mult. (stage 12) 24 63 1512
slave mult. (stages 1-11) 264 45 11880
slave mult. (stage 12) 24 43 1032
hold-up cell (without scaling) 400 10 4000
multiplexers 2:1 (data path) 40 4 160
multiplexers 3:1 (data path) 24 5 120
Gates in circuit 52/,163

5.0 LOGIC SIMULATION

The WFT circuit has been simulated at the logic level for verifying the correctness and
completeness of the design presented in Section 4.0 and measuring the effect of the trun-
cation errors. The simulations have been carried out on small computers!” using software
written in the MATLAB programming language [46]. The circuit has been modeled at
the gate level. Logic state transitions are synchronous, implying that propagation delays
are not taken into account. The size of the source code is about 65 Kbytes. Simulation of
the DFT mode takes about ten seconds per clock cycle. Computing the DFT of 20 15-bit
complex samples takes 45 clock cycles from the time the circuit is reset until the most
significant bit of the Fourier coefficients exits, and hence lasts for seven minutes and a
half.

An example of simulation is now presented. The simulator is fed with 20 complex
saiples having real and imaginary 15-bit values picked up at random from the discrete
interval [—2048,2047] with all values being equiprobable. As explained in Section 4.5.
the binary point in the Fourier coefficients output by the circuit is shifted with respect to
its position at the input. According to Equation (10), with p; = 0, L, = 0 (no scaling),

"T'wo workstations, a SUN SPARCStation I and a SUN IPC, have been used.
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[, =12 and p,, = 9, the point is at position p, = —2 of the output. The output of the
WT'T circuit must therefore by multiplied by four to yield the Fourier coefficients.
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Figure 22: Plot of the Fourier coeflicients computed by simulation of the WFT circuit for
a set of input samples chosen at random in the interval (—2048,2047]. Both
the real (“0”) and the imaginary (“+”) parts of the coefficients are shown.

The Fourier coeflicients obtained by simulation are shown in Fig. 22. Comparing
the values obtained by simulation with the theoretical values yields the errors shown in
Fig. 23. These errors result from the truncation errors of the twiddle factors stored in
the multipliers. These initial truncation errors grow as they combine themselves in the
adders and subtracters that follow. The Fourier coefficients of our example end up having
only ten significant bits, whereas the input samples and the twiddle factors had twelve
significant bits. The reader is referred to the literature for more detailed error analysis of
Winograd’s algorithms [47]-[52].

In the previous example, the input samples were assumed to be error-free, i.e.
perfectly accurate. In practice, the input values themselves may be inaccurate, as a result
of quantization, for example. This may further reduce the number of significant bits in
the Fourier coefficients. Because the errors in the input samples combine themselves in
the pre-multipliers additions, it would thus be a good idea to use more significant bits in

the samples than in the twiddle factors, i.e. to set I, > [,,.
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Figure 23: Plot of the differences, or errors, between the Fourier coefficients computed
by simulation of the WFT circuit and their theoretical values (real “o” and
imaginary “+” errors).

6.0 PRACTICAL CONSIDERATIONS

The testability, speed, and number of pins of the WFT circuit are examined in this section.

These three issues are important in practice.

6.1 TESTABILITY

To verify if a circuit operates according to its specification, a comprehensive set of circuit
stimuli with the expected outputs must be prepared. These are called test vectors. Test
vectors can be categorized in two kinds.

The first kind of test vectors is intented to guaranty that a device under test has
no fabrication defects, i.e. no faults, and operates as predicted from its fabrication masks!s.
The fault coverage is generally measured by using a single “stuck at” fault model [53]. A
score of 95% with this model is usually considered sufficient for prototyping. A 95% fault
coverage means that one out of twenty defective devices having a single fault can pass the
test. and end up in the customer’s hands.

The generation and validation of the first kind of test vectors for the WFT circuit

BIn practice, the generation and validation of test patterns is so difficult and costly that manufacturers
often accept the risks of shipping insufficiently tested devices that may be defective.
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has been assigned to the circuit manufacturer'® which uses a generic testing approach
applicable to any design. This structured approach requires special circuitry and increases
the number of gates on the circuit by about 10 percent. The additional gates have been
included in the gate counts of Section 4.7.

The second kind of test vectors are aimed at verifying that the manufactured
devices, and the manufacturer’s circuit model, does what the designer expects. These
Junctional test vectors are meant to ensure that the circuit has no design flaws. They
can be used in gate-level circuit simulations, i.e. where propagation delays are taken
into account, and during fabrication, normally as a complement to the first kind of test
patterns.

Functional test vectors cannot be exhaustive because with modern circuit densi-
ties the numnber of possible input combinations is too large. Therefore, the circuit designer
must prepare ad hoc functional test vectors aimed at detecting common design flaws.

[t would be tedious to describe all the functional test vectors that have been
prepared for the WFT circuit. A quick overview of the various categories of test vectors
should be sufficient to illustrate the concept of functional testability. The eight categories

of test vectors are listed below, along with short descriptions:

. Test adder: Compute maximum positive value plus zero, one, and minus one. Com-
pute minimum negative value plus zero, one, and minus one. Compute maximum

value plus minimum value.
2. Test subtracter: Same test as for the adder.

3. Test programmable adder/subtracter: Try the control signals (AA, AS, SA, and SS)
while in the mode ADD.

+. Test overflow: In the mode DFT, with scaling enabled and disabled, trigger overflows
in an adder using two positive and two negative numbers, and do the same in
a subtracter with two numbers with different signs. Repeat for pre-, and post-
multipliers layers as well as for real and imaginary sides of circuit. Try to overflow

several adders per layer, and several layers at once.

5. Test tuiddle factors: In the mode DOFT, apply input vectors to circuit such that
every bit of every twiddle factor can be observed at the output. Repeat for the four
different settings: TF0, TF1, TF2, and TF3.

"The manufacturer is LSI Logic Co. of Canada.
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6. Test multiplier: For 15-bit long data, separated by 1- and 10-bit long padding, mul-
tiply very small and very large values, testing all the four possible sign combinations.
Make sure that at least one observable result would be different if the initial offset

circuitry didn’t work.

-1

Test 20-point DFT: Input random complex data with mixed signs and verify Fourier
coeflicients produced by circuit. Try a sinewave that produces an overflow and one

that does not. Repeat with scaling.

oL

Test 60-point DFT: Apply to the circuit the inputs it would get if it were used five
times in succession to compute 60-point discrete Fourier transforms.

Generating the functional test vectors using the logic simulator took several
weeks of CPU time on our computers. The functional test is by no means exhaustive,
but it should provide enough evidence for judging whether the circuits produced by the

manufacturer are functional or not.

6.2 SPEED

The speed of a WFT circuit manufactured in a 0.7um CMOS gate array technology is
now discussed. Preliminary investigation of the circuit has indicated that its clock rate
will be limited by a signal path in the multipliers. Assuming that pipelining flip-flops are
inserted at every three stages of multiplier cells?®, the critical path would run through
three full adders and three multiplexers. Electrical simulations indicate a maximum clock
rate of 30 MHz. This is an approximation, since statistical estimates of layout-dependent
parameters were used.

Assuming that the samples are [, = 15 bits long, with one bit of padding be-
tween the samples of two successive transforms, a 30 MHz WFT circuit could compute a
transform in 16 x 0.033ns = 0.53us, i.e. compute over 1.8 million transforms per second.
This corresponds to throughputs of 37 million and 111 million samples per second for

20-point and 60-point transformations, respectively.

6.3 PIN COUNT

The pin requirement of the WFT circuit is given in Table 5. It turns out that 196 pins
are necessary, of which 164 are used for transferring data and indicating overflows. 10 for

control, 2 for testability, 1 for the external clock and 19 for power. No tri-state pads are

20Gee Section 4.1 for an explanation of these flip-flops.
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Table 5: Input/output requirement of the WFT circuit..

Name Description Pins in/out
Data in six groups of 20 120 in
Data out two groups of 20 40 out
Mode mode: DFT, ADD, MUL, or TST 2 in
Adder/Subtr. control AA, AS, SA, or SS 2 in
Twiddle Factors control TF0, TF1, TF2, or TF3 2 in
Scaling control eight different settings 3 in
Circuit reset RST l in
Data Valid In ovi 1 in
Data Valid Out DVO 1 out
Overflow In OFI 1 in
Overflow Out OFO 1 out
Scan In for testability l in
Scan Out for testability 1 out
Clock CLK 1 in
Power VDD, GND 19 n.a
Total 196

being used: all pins are either for input (134), output (43) or power (19). Packages with

196 pins are currently available.

7.0 COST COMPARISON

In this section, the routed architecture is compared to the systolic architecture of Ward
et al [27) and to a parallel FFT architecture from a cost standpoint. The unit measure
of cost is the logic gate, for lack of a better unit that would take into consideration the
routing areas. The routed WFTA and the parallel FFT architectures require routing.
whereas the systolic architecture does not.

The number of additions and multiplications in the WFTA can be derived from
Equations (8) and (9). The additions and multiplications in the FFT can be calculated
by [19]

AFFT——'—(4V/2)(—10+710g21\/)+8. (1)

and

Mepr = (1V/2)(—10+310g2 N)+8. (12)

The number of arithmetic operations being known, the gate count of each architecture
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can be computed. Assume that each multiplier has 12 stages, and that each stage consists
of one multiplier cell containing 72 gates. Adders and subtracters cost 36 gates each. The
arrays in the systolic architecture contain 336 N My, gates?!. Denote by Grrr, Grouted, and
Gl yyseolic, the numbers of gates in the FFT, routed, and systolic architectures, respectively.

These gate counts can be calculated by the equations:

Grrr = (12-72- Mfprr) + (36 - AFFT) , (13)
Grouted = (1272MW)+(36AW) y (14)
Gsystolic = (1272MW)+(336‘NMW) . (1"))

The costs of the three architectures are shown in Fig. 24 as a function of the number

of points V. Of the three, the routed architecture appears to be the least expensive.
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igure 24: Plot of the the number of gates in the FFT, routed, and systolic architectures.
as a function of the number of points V.

e FI'T architecture contains two to three times more gates than the routed WI'TA for
comparable transform sizes. The systolic architecture is much more expensive than the

two others.

21See Section 2.0 for an analysis of the systolic architecture cost.
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8.0 CONCLUSION

In this report, a routed architecture for the Winograd Fourier transform algorithms
(WFTA) has been presented. This bit-serial architecture maps an N-point WFTA di-
rectly onto a VLSI circuit. The resultant layout exhibits little regularity among the
adders, but it covers a small area and can be generated by computer-aided design tools.
The nesting method invented by Winograd has been proposed as a means of partitioning
a large transformation into several pieces implemented on individual circuits. One advan-
tage of this partitioning approach is that it minimizes the number of multipliers, which
are very expensive. Another advantage is that the netted circuits can be all of the same
type. This reduces the design time and the number of mask sets. The main disadvantage
is that it requires more input/output pins than some other approaches.

The logic design of a 20-point Winograd fourier transformation (WFT) circuit
has been presented in detail. Data formats, which have an impact on the output accu-
racy and design cost, have been examined. Floorplans for the pre- and post-multipliers
additions have been proposed, along with logic diagrams for the adding and subtracting
cells. Overflow detection has been included in the design. Low cost multipliers for two’s
complement input and output data have been designed. The circuit can be programmed
to compute either 20-point DFTs by itself, or 60-point DFTs when it is connected to four
other circuits. The circuit contains about 55000 gates and has 196 pins. The whole design
has been simulated on a computer to verify the correctness of its logic and measure the
accuracy of the output data. A comprehensive set of test vectors has been designed for
verifying the functionality of the circuit samples.

Overall. the routed architecture appears to be attractive for computing moder-
ate size DFTs at very high speeds. The routed architecture can also be combined with
partitioning techniques like the prime factor algorithm for computing larger DFTs. The
possible applications include electronic warfare, image, radar, speech, and sonar process-

14
me.
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APPENDIX

A.0 DERIVATION OF WINOGRAD FOURIER TRANSFORM
ALGORITHMS FOR 20 POINTS AND 60 POINTS

[n this section we derive Winograd Fourier transforriation algorithms (WFTA) for 20 and
60 points. We assume that the reader has a basic understanding of the nesting method

! Winograd [2].

A.1 DERIVATION OF A 20-POINT ALGORITHM

Suppose that one wants to derive an algorithm for computing N-point DFTs. Let
N = N, V,, where Ny and N, are relatively prime. Assume that an algorithm is known for
computing Vi-point DFTs using A; additions and M; multiplications, and that another
algorithm is known for computing N,-point DFTs using A, additions and M, multiplica-
tions. Then the Ni-point and N,-point algorithms can be “nested” to yield an N-point
algorithm requiring My M2 multiplications and NyA; + M, A, additions.

A 20-point algorithm is now derived from the 4- and 5-point algorithms. Let
N =120, Ny =4, and N, = 5. The resultant 20-point algorithm contains

M= MM, =4-6 =24 complex multiplications,

and

A= NA + MiA; =5-8+4-17 =108 complex additions.

With .V, =5 and .V, = 4, it would contain instead
A= NA + MiA; =4-17+4+6-8 =116 complex additions

and be more expensive.
By the Chinese Remainder Theorem (CRT), every integer 0 < n < N — 1 can
Le represented by the pair (ng, ny) such that ny = n mod N, and n; = n mod NV,. Taking

200 = |- 5. we get the mapping:

0-(0,0) 1-(L1) 2-(22) 3-(33)
1-(04)  5-(L0)  6-(21) T-(3.2)
8 -(03) 9-(14) 10-(2.0) 11 -(3,1)
12 - (62 13-(1.3)  14-(24) 15~ (3.0)
16 - (0.1)  17-(1.2)  18-(23) 19-(34)
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which put into lexicographical order yields: 0, 16, 12, 8, 4, 5, 1, 17, 13, 9, 10, 6, 2, 18, 14,
15,11, 7, 3, and 19.
Let us define

ag as a0 ais
ate a ag ai
A = | a2 ) ap =\ ay s Az = as ) az = as ,
asg a13 ais as
aq ag a4 a19
Ao As Ao Ags
A Ay As An
Ay = Ay s A, = Az 3 Ay = Az ) A; = Ar
As Ajs Ajg As
Ay Ag A Alg

and apply the following 4-point algorithm [2] to these vectors:

S$; = ag + az Sy = ag — az
s3 = a; + as S4 = a; —as

S5 = 81 + 83 S¢ = S; — S3

M1=W'55 M2=W'56
M;=W.s, M, =isinv W -sy

S7=M3+M4 SS=M3—M4
Ao =M, A, =57
A, =M, Az =sg
where W denotes the 5-point transformation given in Section 2.2, and v = —3. A 20-
point Winograd Fourier transformation algorithm is obtained.

The remaining step consists of computing the values of u and v which appear
in the twiddle factors of the algorithm (u comes from the 5-point, v from the 4-point).
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Beginning with u, the value of b must be calculated using the equation [2]:

2w

(e F)OD = (7R )P (A1)

The CRT indicates that (0,1) corresponds to 16, thus

(e )10

= (e~ %P (A.2)
and

b=4. (A.3)

The value of u in the N-point algorithm is equal to b times its value in the N,-point

algorithm (—22):

2r 3r
T y=_-= A
5 ) 5 ( )

To obtain v, the value of a must be computed using the equation [2}:

u=4(

2m 2m

(em 7 )10 = (7P )2 (A.D)
The CRT maps (1,0) into 5, thus
(e7) = (7 %) (A.6)
and
a=1 (A.T)

This completes the derivation of the 20-point WFTA. The resultant algorithm is
now simply stated in the same raw format that was input to our simulator for validation.

The additions and multiplications are all on complex data.

A-3
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A.2 20-POINT ALGORITHM

s6 =

a0

-al0 s

s7 = al6-afb s
s8 = al2-a2 s

s9 =

a8

-al8 s

s10 = a4-al4

s40 =

s43
s46

sl+s1l
s2+s12
s3+s13
s4+s14
s5+s15

s22-s525

s31+s33

s35+s21
s27-s30
s39+s41
s43+s26

s48 = s7-s10
s47+s49

s51

5
s5
s5
6

L[]
[Te TN« N |}

wu
N

s51+s6
s17-s20

= s55+s57
= gb9+s16

11 = ab+alb
12 = ai+all
13 = al7+a7
14 = al3+a3
s15 = a9+al19

s26 = s1-s11
827 = s2-s12
s28 = s3-s13
s29 = s4-s514
s30 = s5-s515

s33
s36

s24+s23
s31-s33

s41
s44

529+s28
s39-s41

s49 = s9+s8
852 = s47-s549

s57
s60

s19+s18
s55-s57

((cos(u)+cos(2*u))/2-1)*s35
((cos(u)-cos(2*u))/2)*s36

j*(sin(u)+sin(2*u))*s32
j*sin(2%u)*s37
j*(sin(u)-sin(2+*u))+*s34

((cos(u)+cos(2*u))/2-1)*s43

v = -pi/2

u = -8%pi/5
sl = a0+alo0
s2 = al6+ab
s3 = al2+a2
s4 = aB8+al8
sb = a4+al4d
s16 = ab-alb
s17 = at-all
s18 = al7-a7
s19 = ai3-a3
s20 = a%9-al9
s31 = s22+4s25
s34 = s24-s23
s37 = s832+s34
s39 = s27+s30
s42 = s29-s28
s45 = s40+s42
s47 = s7+s10
s50 = s9-s8
s53 = s48+s50
s55 = s17+s20
s58 = 319-s18
s61 = s56+s58
mQ = s38

mi =

m2 =

m3 =

mg =

m5 =

m6 = s46

m7 =

m8 =

((cos(u)-cos(2%u))/2)*s44
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m9 = j*(sin(u)+sin(2%u))*s40

mi0 = j*sin(2%u)*s45
m1il = j*(sin(u)-sin(2%u))*s42
mi2 = sb54

m13 = ((cos(u)+cos(2*u))/2-1)*s51

mi4 = ((cos(u)-cos(2*u))/2)*s52

mi5 = j*(sin(u)+sin(2#*u))*s48

ml6 = j*sin(2*u)*s53

m17 = j*(sin(u)-sin(2%u))*s50

mi8 = j*sin(v)*s62

m19 = j*sin(v)*((cos(u)+cos(2*u))/2-1)*s59
n20 = jesin(v)*((cos(u)-cos(2+u))/2)*s60
m21 = j*sin(v)*j*(sin(u)+sin(2*u))*s56
m22 = j*sin(v)*j*sin(2*u)*s61

m23 = j*sin(v)*j*(sin(u)-sin(2*u))*s58

s63 = mO+mi s64 = s63+m2 s65 = s63-m2

s66 = m3-m4 s67 = m4+mb s68 = s64+s66

s69 = s64-~-s66 s70 = s65+s67 s71 = s65-s67
s72 = mé+m7 s73 = s72+m8 s74 = s72-m8

s75 = m9-m10 s76 = m10+mil s77 = g73+s75
s78 = 873-s75 s79 = s74+s76 s80 s74-s76
s81 = mi12+m13 s82 = s81+mi14 s83 s81-m14
s84 = m15-m1é 885 = mi16+ml17 s86 = s82+s84
s87 = s82-s84 888 = s83+s85 s89 = s583-s85
s90 = m18+ml9 s91 = s90+m20 892 = s90-m20
s93 = m21-m22 s94 = m22+m23 s95 = s91+s93
s96 = s91-s593 s97 = s92+s94 s98 = s592-s94

s99 mi2+mi8 s104 = mi2-m18
s100 = s86+s95 s105 = s86-s95

s101 = s88+s97 5106 = s88-s597
5102 = s89+s98 s107 = s89-s98
s103 = s87+s96 s108 = s87-s96

AO = mO A5 = s99 A10 = m6  Al5 = s104
A16 = s68 A1l = s100 A6 = s77 A1l = s105

A12 = s70 Al17 = s101 A2 = 879 A7 = s106
A8 = s71 Al13 = 5102 A18 = s80 A3 = 5107
A4 = s69 A9 = s103 A14 = s78 A19 = 5108
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A.3 DERIVATION OF A 60-POINT ALGORITHM

With the help of the 20-point algorithm, we now derive an algorithm for 60 = 3-20 points
which contains M =3 -24 = 72 complex multiplications and A =206 + 3- 108 = 444
complex additions. The procedure is exactly the same as for the 20-point algorithm.
Note that the factors 3, 4, and 5, are mutually prime. If they were not, the Winograd
nesting method could not be used.

Using the Chinese Remainder Theorem, the inputs and outputs are reordered as
follows: 0, 21, 42, 3, 24, 45, 6, 27, 48, 9, 30, 51, 12, 33, 54, 15, 36, 57, 18, 39, 40. 1, 22,
43, 14,25, 46, T, 28, 49, 10, 31, 52, 13, 34, 55, 16, 37, 58, 19, 20, 41, 2, 23, 44, 5, 26. {7. 8.
29,50, 11, 32, 53. 14, 35, 56, 17, 38, 59. Let us define the vectors

a(, = (ag az1 a42 a3 a4 A4s Qg A27 A48 A9 A30 G51 Q12 A33 As4 Q15 36 G57 Q18 Q39)

ai = (a40 @1 Q22 A43 a4 Q25 Aae A7 Q28 Q49 Q10 €31 A52 13 G34 455 Q16 237 A58 A19)

atz = (@20 @41 2 Q23 Q44 G5 A6 A7 Gg Q29 Q50 A1) 32 G53 A14 G35 G5 Q17 A3g U59)

A = (Ao Az Agp Az Aoy Ays Ae Aar Ass Ag Azo Asy Arg Asz Asq Ars Asze Asy Ars lag)
Al = (Ao Ay Az Ayz Ay Ags Aue A7 Azg Ays Aro Az Asz Az Asq Ass Are Azz Ass o)

AL, = (A0 An Az Az Ay As Age Agr Ag Agg Aso Anr Azz Asz Ary Ass Ase Air Asg Asy)

and apply to these vectors the 3-point algorithm (2]

St = a; + az S, = a1 — &z S3 =8, + Qg

Mg=W.s; M, =(cosw — 1)W - s; M; =isinw W - s,
sq = My + M, S5 =S4 + M s¢ = sS4 — M,
A():Mo A] = S A2=S(,

where this time W denotes a 20-point transformation and w = —2%. A 60-point Winograd
Fourier transformation algorithm is obtained.
The new values of u, v, and w are easily found. Since (0, 1) corresponds to 21,

b is equal to 7, and hence

87 567
"_’7 —_——_— ) = - ———
u=T( 3 5
and .
. T
U:((—;):—?.
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Similarly, (1,0) corresponds to 40, a is equal to 2, and the value of w in the 60-point
algorithm is:
u:==2(——g£):=-—é£.
3 3
The resultant 60-point Winograd Fourier transform algorithm is given bellow.

Again all the additions and multiplications are on complex data.

A.4 60-POINT ALGORITHM

u = -(56/5)*pi
v = -(7/2)*pi
w = -(4/3)*pi

sO = a40+a20 s20 = a40-a20 s40 s0+al

sl = al+a4l s21 = al-a41 s41 = sl+a21l

s2 = a22+a? S22 = a22-a2 s42 = s2+a42

s3 = a43+a23 s23 = a43-a23 s43 = s3+a3

s4 = a4+ads s24 = a4-ad4 s44 = s4+a24

s5 = a25+ab s25 = a25-ab s45 = sb+a4b

s6 = a46+a26 s26 = a46-a26 s46 = s6+a6

s7 = aT+a47 s27 = a7-a47 s47 = s7+a27

s8 = a28+a8 s28 = a28-a8 s48 = s8+a48

s9 = a49+a29 s29 = a49-a29 s49 = s9+al
s10 = a10+a50 s30 = a10-a50 s50 s10+a30
s11 = a31+all s31 = a31l-all s51 = s11+a51
s12 = a52+a32 s32 = ab2-a32 s52 = s12+al2
s13 = al13+a83 s33 = al3-ab3 s53 = s13+a33
s14 = a34+al4 s34 = al34-al4 s54 = si4+ab4
s15 = a55+a35 s35 = ab5-a35 s55 = s15+alb
s16 = al6+aS6 s36 = al6-a56 sb6 = s16+a36
s1l7 = a37+al? s37 = a37-al7 s57 = s17+ab7
s18 = ab8+a38 s38 = a58-a38 s68 = s18+al8
s19 = al9+ab9 s39 = al19-a59 s59 = s19+a39

s61 = s40+s50 s66 = s40-s50 s71 = s45+s55
s62 = sb6+s46 s67 = s56-s46 s72 = s41+s51
s63 = s52+s42 s68 = s52-s42 s73 = s57+s47
s64 = s48+s58 s69 = s48-s58 s74 = gb3+s543
s65 = s44+s54 s70 = s44-s54 s75 = s549+s59
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s76 = s45-355 s81 = s61+s71 s86 = s61-s71
s77 = s41-s51 s82 = s62+s72 s87 = s62-s72
s78 = g57-s47 s83 = s63+s73 s88 = s863-s73
s79 = 353~-843 584 = s64+s74 s89 = s64-s74
s80 = s49-s59 s85 = s65+s75 s90 = s65-s75

s91 = s82+s85 s92 = s82-s85 s93 = s84+s83

s94 = s84-s83 595 = s891+s93 s96 = s91-s93

s97 = s592+4s94 s98 = s95+s81

599 = s87+s90 s100 = s87-s90 s101 = s89+s88

s102 = s89-s88 s103 = s89+s101 s104 = s99-s101
s105 = s100+s102 5106 = s103+s86

s107 = s67+s70 s108 = s67-s70 s109 = s69+s68
s110 = s69-s68 si11 = s107+s109 s112 = s107-s109
s113 = s108+s110 s114 = s111+s66

s115 = s77+s80 s116 = s77-s80 s117 = s79+s78
5118 = 879-878 s119 = s115+s117 s120 = s115-s117
s121 s116+s118 $122 = s119+s76

mO = s98

ml = ((cos(u)+cos(2*u))/2-1)*s95
m2 = ((cos(u)-cos(2*u))/2)*s96

m3 = j*(sin(u)+sin(2*u))*s92

mé = j*sin(2+%u)*s97

m5 = j*(sin(u)-sin(2*u))*s94

m6 = s106

m7 = ((cos(u)+cos(2*u))/2-1)*s103
m8 = ((cos(u)-cos(2*u))/2)*s104
m9 = j*(sin(u)+sin(2#*u))*s100

m10 = j*sin(2*u)*s105

mil = j*(sin(u)-sin(2*u))*s102

mi2 = si114

mi3 = ((cos(u)+cos(2*u))/2-1)*s111
mi4 = ((cos(u)-cos(2*u))/2)*s112
mi5 = j*(sin(u)+sin(2*u))*s108
mi6 = j*xsin(2+u)*s113

m17 = j*(sin(u)-sin(2*u))#*s110

mi8 = j*sin(v)=*s122

mi9 = j*xsin(v)*((cos(u)+cos(2*u))/2-1)*s119
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m20
m21
m22
m23

s123
s126
s129

[}

s132 =

s135

s138 =

s141

s144 =
s147 =
s150 =

s153
s156

s159
s160
s161
s162
s163

s169
s170
s171
s172
s173

s184
s185
s186
s187
s188

5199

5202 =

5205
5207

mO+m1 s124 = s123+m2 s125 = s8123~m2
m3-mé¢ s127 = m4+md $128 = s124+s126
s124-s126 5130 = s125+s127 s131 = s125-s5127
mé+m7 s133 = s132+m8 s134 = s132-m8
m9-m10 s136 = mi0+mi11l s137 = s133+s135
5133-s5135 s139 = s134+s136 s140 = s134-s136
mi2+mi13 5142 = s141+m14 s143 = s141-mi4
mi5-m16 s145 = m16+ml17 s146 = s142+s144
8142-5144 s148 = s143+s145 s149 = s143-s145
mi8+m19 s151 = s150+m20 s152 = s150-m20
m21-m22 s154 = m22+m23 s155 = s151+s153
s151-5153 8157 = s152+s154 s158 = s152-s154
mi2+mi18 s164 = m12-mi18
8146+s155 8165 = s146-s155

= 5148+s5157 s166 = s148-s157
5149+s158 s167 = s149-s158
s147+s156 s168 = s147-s156
s0+s10 s174 = s0-s10 s179 = s5+s15
s16+s6 s175 = s16-s6 s180 = si+sil
s12+s2 s176 = s12-s2 8181 = g17+4s7
s8+s18 8177 = s8-s518 s182 = s13+s3
s4+s14 s178 = 34-s14 si183 = s9+s19
s5-s15 5189 = s169+s179 s194 = s169-s179
sl-si1 s190 = s170+s180 s195 = s170-s180
s17-s7 s191 = s171+s181 s196 = s171-s181
s13-s3 5192 = s172+s182 s197 = s172-s182
s9-s19 s193 = s173+s183 s198 = s5173-s183
s190+s193 5200 = s190-s193 5201 = s192+s191
s192-s191 8203 = s199+s201 5204 = s199-s201
s200+s202 5206 = s5203+s189
s195+s198 s208 = 5195-5198 5209 = s197+s196

j*sin(v)*((cos(u)-cos(2*u))/2)*s120

j*sin(v)*j*(sin(u)+sin(2*u))*
j*sin(v)*j*sin(2*u)*s121

s116

j*sin(v)*j*(sin(u)-sin(2*u))*s118
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s210
s213
s215

1]

s218 =

s221

8223 =
5226 =

s229

m24
m25

m26 =

m27
m28

m29 =

m30
m31
m32

m33 =

m34
m35
m36
m37
m38
m39
m40
m41
m42
m43

m44 =

m45
m46
m47

s231
s234
s237
s240
s243
s246

$197-s196 s211 = s207+s8209 s212 = s207-s209

s208+s210 s214 = s211+s194

s175+s178 s216 = s175-s178 s217 = sl177+s176

s177-s176 s219 = s215+s5217 s220 = s215-s5217
= 5216+s5218 s222 = s219+s174

8185+s188 s224 = 5185-5188 s225 = s187+s186

8187-s186 8227 = 3223+s225 8228 = 5223-s5225

5224+s5226 5230 = s227+s5184

(cos(w)-1)*s206
(cos(w)-1)*((cos(u)+cos(2*u))/2-1)*s203
(cos(w)-1)*((cos(u)-cos(2*u))/2)*s204
(cos(w)-1)*j*(sin(u)+sin(2*u))*s200
(cos(w)-1)*j*sin(2%u)*s205
(cos(w)-1)*j*(sin(u)-sin(2*u))*s202
(cos(w)-1)*s214
(cos(w)-1)*((cos(u)+cos(2*u))/2-1)*s211
(cos(w)=1)*((cos(u)~cos(2*u))/2)*s212
(cos(w)-1)*j*x(sin(u)+sin(2*u))*s208
(cos(w)-1)*j*sin(2%u)*s213
(cos(w)-1)*j*(sin(u)-sin(2*u))*s210
(cos(w)-1)*s222
(cos(w)-1)*((cos(u)+cos(2*u))/2-1)*s219
(cos(w)-1)*((cos(u)-cos(2*u))/2)*s220
(cos(w)-1)*j*(sin(u)+sin(2%u))*s216
(cos(w)-1)*j*sin(2*u)*s221
(cos(w)-1)*j*(sin(u)-sin(2*u))*s218
(cos(w)-1)*j*sin(v)*s230
(cos(w)-1)*j*sin(v)*((cos(u)+cos(2*u))/2-1)*s227
(cos(w)-1)*j*sin(v)*((cos(u)-cos(2*u))/2)*s228
(cos(w)~1)*j*sin(v)*j*(sin(u)+sin(2*u) )*s224
(cos(w)-1)*j*sin(v)*j*sin(2*u)*s229
(cos(w)-1)*j*sin(v)*j*(sin(u)-sin(2*u))*s226

m24+m25 s232 5231+m26 5233 = s231-m26
m27-m28 s235 = m28+m29 5236 = s232+4s234
8232-8234 8238 = 523348235 5239 = s233-s235
m30+m31 5241 = s240+m32 s242 = s240-m32
m33-m34 s244 = m34+m35 s245 = s241+s243
S241-s243  s247 = s242+s244 5248 = s5242-s5244
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s249 = m36+m37 s250 = s249+m38 s251 = 5249-m38
s252 = m39-m40 s253 = m40+m41 s254 = 5250+s5252
s255 = 8250-s5252 s256 = s251+s5253 5257 = 5251-s5253
s258 = m42+m43 s259 = s258+m44 s260 = s258-m44
s261 = m45-m46 s262 = m46+m47 8263 = s5259+s261
s264 = s5259-s261 s265 = s260+s262 s266 = 5260-s5262
$267 = m36+m42 s272 = m36-m42

5268 = s254+s263 s273 = s254-s5263

5269 = g256+s265 s274 = s256-5265

s270 = s257+s266 s275 = s257-s266

5271 = s255+s264 s276 = s255-s5264

s277 = s20+s30 s282 = s20-s30 s287 = g25+s35

s278 = s36+s826 s283 = s36-s26 s288 = s21+s31

s279 = s32+s22 s284 = s32-s22 5289 = s37+s27

5280 = s28+s38 s285 = s28-s38 s290 = s33+s23

5281 = s24+s34 s286 = s24-s34 s291 = s29+s39

s292 = s25-s35 8297 = s277+s287 s302 = s277-s287
s293 = s21-s31 5298 = 5278+s288 s303 = s278-s5283
8294 = s37-s27 s299 = 8279+s289 s304 = s5279~-s5289
s295 = s33-s23 s300 = s280+s290 s305 = 5280-s5290
s296 = s29-s39 s301 = s281+s5291 s306 = s281-s291
s307 = 3298+s301 s308 = s298-s5301 8309 = s300+s299
s310 = s300-s299 s311 = s307+s309 312 = s307-s309
s313 = s308+s310 s314 = s311+s297

8315 = 330348306 8316 = s303-s306 38317 = s305+s304
5318 = s305-s304 s319 = s315+s317 8320 = s315-s317
5321 = s8316+s318 8322 = s319+s302

8323 = 5283+s5286 5324 = s283-s5286 5325 = s285+s284
s326 = s285-s5284 8327 = s323+s325 s328 = s323-5325
8329 = s324+s326 s330 = s327+s282

s331 = s293+s5296 8332 = 5293-s5296 5333 = s5295+s5294
s334 = 3295-s5294 s335 = s8331+s333 s336 = s331-s333
s337 = $332+4s334 s338 = s335+s292

m48 = j*sin(w)*s314

m49 = j*sin(w)*((cos(u)+cos(2*u))/2~1)*s311
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m50
mS1
m52
m53
m54
m55
m56
mS7
m58
m59
mé60
mé1
mé2
mé3
m64
mé5S
mé6
mé67
mé8
mé9
m70
m71

s339

s342 =
s345 =

s348
s351
s354
s357
s360
s363
s366
s369
s372

s375
s376
s377
s378

j*sin(w)*((cos(u)-cos(2%u))/2)*s312
j*sin(w)*j*(sin(u)+sin(2*u))*s308
j*sin(w)*j*sin(2*u)*s313
j*sin(w)*j*(sin(u)-sin(2*u))*s310
j*sin(w)*s322
j*sin(w)*((cos(u)+cos(2*u))/2-1)*s319
j*sin(w)*((cos(u)-cos(2*u))/2)*s320
j*sin(w)*j*(sin(u)+sin(2%*u))*s316
j*sin(w)*j*sin(2*u)*s321
j*sin(w)*j*(sin(u)-sin(2*u))*s318
j*sin(w)*s330
j*sin(w)*((cos(u)+cos(2*u))/2-1)*3327
j*sin(w)*((cos(u)-cos(2*u))/2)*s328
j*sin(w)*j*(sin(u)+sin(2*u))*s324
j*sin(w)*j*sin(2*u)*s329
j*sin(w)*j*(sin(u)-sin(2*u))*s326
j*sin(w)*j*sin(v)*s338
j*sin(w)*j*sin(v)*((cos(u)+cos(2%u))/2-1)*s335
j*sin(w)*j*sin(v)*((cos(u)-cos(2*u))/2)*s336
j*sin(w)*j*sin(v)*j*(sin(u) +sin(2*u))*s332
j*sin(w)*j*sin(v)*j*sin(2*u)*s337
j*sin(w)*j*sin(v)*j*(sin(u) -sin(2+u))*s334

m48+m49 340 s339+m50 s341 = s339-m50
m51-m52 5343 = m52+mb53 s344 = s340+s342
8340~s342 5346 = s341+4s343 3347 = s341-s343
m54+m55 5349 = s348+m56 s350 = s348-m56
m57-m58 5352 = m58+m59 s353 = s349+s351
s349-s351 s355 = 3350+s352 s356 = s350-s352
m60+m61 8358 = s8357+m62 8359 = s357-m62
m63-m64 3361 = m64+m65 s362 = s358+s8360
s358~-3360 s364 = s359+s8361 5365 = s359-s361
m66+m67 5367 = s366+m68 s368 = s366-m68
m63-m70 s370 = m70+m71 8371 = s367+s369
s367~-s369 s373 = s368+s370 5374 = 3368-s370

mé0+m66  s380 = m60-m66

s362+s371 5381 = s362-5371
8364+s373 s382 = s364-s373
s365+s374 s383 = s365-3374
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8379 = s8363+s372 s384 = s363-s372

s385 = m0+m24 s405 = s3385+m48 s425 = s385-m48

5386 = s160+s268 38406 = s386+s376 s426 = s386-s376
8387 = 8139+3247 8407 = s387+s355 5427 = s387-s355
5388 = 3167+s275 s408 = s388+s383 s428 = s388-s383
8389 = 5129+s5237 s409 = s389+s345 s429 = s389-s345
8390 = 815945267 s410 = s390+s375 s430 = s390-s375
5391 = 3137+s5245 s411 = s391+s353 s431 = s391-s8353
8392 = s166+5274 s412 = s392+s382 8432 = s392-s382
5393 = s131+s5239 s413 = s393+s347 s433 = s393-s5347
s394 = s163+s271 s414 = s394+s379 5434 = s394-s379
s395 = m6+m30 5415 = s395+m54 s435 = s395-m54

8396 = s165+s273 s416 = s396+s381 s436 = s396-s381
8397 = 3130+5238 5417 = s397+s346  s437 = s397-s5346
8398 = 516245270 s418 = s398+s378 s438 = s398-s378
8399 = s138+s5246 s419 = s399+s354 s439 = s399-s354
5400 = 8164+s5272 s420 = s400+s380 s440 = s400-s380
s401 = 3128+5236 s421 = s401+s344 s441 = s401-s344
s402 = s161+s269 8422 = s402+s377 s442 = s402-s377
8403 = s140+s248 5423 = s403+s356 s443 = s403-s356
s404 = s168+s276 s424 = s404+s384 s444 = s404-s384

A0 = mO  A40 = s405 A20 = s425
A21 = 8160 Al = s406 A4l = s426
Ad42 = s139  A22 = s407 A2 = s427
A3 = s167 A43 = s408 A23 = s428
A24 = s129 A4 = s4089 A44 = s429
A4S s159 A25 = s410 A5 = s430
A6 = 5137 A46 = s411 A26 = s431
A27 = 5166 A7 = s412 A47 = s432
A48 = 8131 A28 = s413 A8 = s433
A9 = s163 A49 = s414 A29 = s434
A30 = m6 A10 = s415 A50 = s435
AS51 = s165 A31 = s416 All = s436
A12 = s130 A52 = s417  A32 = s437
A33 = s162 A13 = s418 AS53 = s438
AS4 = s138 A34 = s419 Al14 = s439
A15 = s164  AS55 = s420 A35 = s440
A36 = s128 A16 = s421 AbB6 = s441

A-13




APPENDIX

AS7 = s161
Al18 = s140
A39 = 3168

A37
A58
A19

s422
5423
s424

ALY
A38
A59

s442
5443
s444
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B.0 TWIDDLE FACTORS

Tables 6-13 of this appendix present the theoretical values and 12-bit approximations of
the twiddle factors in the sets TF0, TF1, TF2, and TF3. Each 12-bit value is encoded in
two's complement notation with a binary point after the third bit. The quantization error
does not exceed 0.076%.

The bits of the twiddle factors TF1, TF2, and TF3 must be inverted before being
stored into the multipliers described in this document. The bits of TF0 need not be
inverted. The least significant bit must be stored into the first multiplier stage, where the
multiplicands enter, and the most significant bit into the last stage, where the product

exits.
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Table 6: Twiddle factors in TF0 (real side)..

Theoretical Value

Stored Value

12 Bits

MSB LSB

Decimal

=1 O Tt e o — O

v e

9
10
11
12
13
14
15
16
17
13
19
20
91

[CV2N SV §

2
3

1.00000000000000
-1.25000000000000
0.55901699437495
1.53884176858763
0.58778525229247
0.36327126400268
1.00000000000000
-1.25000000000000
0.55901699437495
1.53884176858763
0.58778525229247
0.36327126400268
1.00000000000000
-1.25000000000000
0.55901699437495
1.53884176858763
0.58778525229247
0.36327126400268
-1.00000000000000
1.25000000000000
-0.55901699437495
1.53884176858763
0.58778525229247
0.36327126400268

(001000000000)
(110110000000)
(000100011110)
(001100010100)
(000100101101)
(000010111010)
(001000000000)
(110110000000)
(000100011110)
(001100010100)
(000100101101)
(000010111010)
(001000000000)
(110110000000)
(000100011110)
(001100010100)
(000100101101)
(000010111010)
(111000000000)
(001010000000)
(111011100010)
(001100010100)
(000100101101)
(000010111010)

1.000000000
-1.250000000
0.558593750
1.539062500
0.587890625
0.363281250
1.000000000
-1.25000000u
0.558593750
1.539062500
0.587890625
0.363281250
1.000000000
-1.250000000
0.558593750
1.539062500
0.587890625
0.363281250
-1.000000000
1.250000000
-0.558593750
1.539062500
0.587890625
0.363231250 |




APPENDIX

Table 7: Twiddle factors in TF0 (imaginary side)..

No  Theoretical Value Stored Value
12 Bits Decimal
MSB LSB
0  1.00000000000000 (001000000000)  1.000000000
1 -1.25000000000000 (110110000000) -1.250000000
2 0.55901699437495 (000100011110)  0.558593750
3 -1.77v%4176858763 (110011101100) -1.539062500
4 -0.%%" 3525229247 (111011010011) -0.587890625
5 036327126400268 (111101000110) -0.363281250
6 1.00000000000000 (001000000000) 1.000000000
7 -1.25000000000000 (110110000000) -1.250000000
8 0.55901699437495 (000100011110) 0.558593750
9 -1.53884176858763 (110011101100) -1.539062500
10 -0.58778525229247 (111011010011) -0.587890625
11 -0.36327126400268 (111101000110) -0.363281250
12 1.00000000000000 (001000000000) 1.000000000
13 -1.25000000000000 (110110000000) -1.250000000
14 0.55901699437495 (000100011110) 0.558593750
15 -1.53884176858763 (110011101100) -1.539062500
16 -0.58778525229247 (111011010011) -0.587890625
17 -0.36327126400268 (111101000110) -0.363281250
18 1.00000000000000 (001000000000) 1.000000000
19 -1.25000000000000 (110110000000) -1.250000000
20 0.55901699437495  (000100011110)  0.558593750
21 1.53884176858763  (001100010100)  1.539062500
22 0.58778525229247  (000100101101)  0.587890625
23 0.36327126400268 (000010111010) 0.363281250
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Table 8: Twiddle factors in TF1 (real side)..

No Theoretical Value Stored Value
12 Bits Decimal
MSB LSB

0 1.00000000000000 (001000000000) 1.000000000
1 -1.25000000000000 (110110000000) -1.250000000
2 -0.55901699437495 (111011100010) -0.558593750
3 -0.36327126400268 (111101000110) -0.363281250
4 -0.95105651629515 (111000011001) -0.951171875
5 1.53884176858762 (001100010100) 1.539062500
6  1.00000000000000 (001000000000) 1.000000000
7 -1.25000000000000 (110110000000) -1.250000000
8 -0.55901699437495 (111011100010) -0.558593750
9 -0.36327126400268 (111101000110) -0.363281250
10 -0.95105651629515 (111000011001) -0.951171875
11 1.53884176858762 (001100010100) 1.539062500
12 1.00000000000000 (001000000000) 1.000000000
13 -1.25000000000000 (110110000000) -1.250000000
14 -0.55901699437495 (111011100010) -0.558593750
15 -0.36327126400268 (111101000110) -0.363281250
16 -0.95105651629515 (111000011001) -0.951171875
17 1.53884176858762 (001100010100) 1.539062500
18  1.00000000000000 (001000000000) 1.000000000
19 -1.25000000000000 (110110000000) -1.250000000
20 -0.55901699437495 (111011100010) -0.558593750
21 0.36327126400268  (000010111010) 0.363281250
22 0.95105651629515  (000111100111)  0.951171875
23 -1.53884176858762  (110011101100) -1..39062500
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Table 9: Twiddle factors in TF1 (imaginary side)..

No Theoretical Value Stored Value
12 Bits Decimal
MSB LSB

0 1.00000000000000 (001000000000)  1.000000000
1 -1.25000000000000 (110110000000) -1.250000000
2 -0.55901699437495 (111011100010) -0.558593750
3 0.36327126400268 (000010111010) 0.363281250
4 0.95105651629515 (000111100111) 0.951171875
5 -1.53884176858762 (110011101100) -1.539062500
6 1.00000000000000 (001000000000) 1.000000000
7 -1.25000000000000 (110110000000) -1.250000000
8 -0.55901699437495 (111011100010) -0.558593750
9 0.36327126400268 (000010111010) 0.363281250
10 0.95105651629515 (000111100111) 0.951171875
11 -1.53884176858762 (110011101100) -1.539062500
12 1.00000000000000 (001000000000) 1.000000000
13 -1.25000000000000 (110110000000) -1.250000000
14 -0.55901699437495 (111011100010) -0.558593750
15 0.36327126400268 (000010111010) 0.363281250
16  0.95105651629515 (000111100111) 0.951171875
17 -1.53884176858762 (110011101100) -1.539062500
13 -1.00000000000000 (111000000000) -1.000000000
19 1.25000000000000 (001010000000) 1.250000000
20 0.55901699437495 (000100011110)  0.558593750
21 0.36327126400268  (000910111010)  0.363281250
22 0.95105651629515 (000111100111) 0.951171875
23 -1.53884176858762 (110011101100) -1.539062500
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Table 10: Twiddle factors in TF2 (real side)..

No

Theoretical Value

Stored Value

12 Bits
MSB LSB

Decimal

O 00 -1 U = W -~ O

10
11
12
13
14
15
16
17
138
19
20
1

2
3

~

o ot

-1.50000000000000
1.87500000000000
0.83852549156242
0.54490689600402
1.42658477444273

-2.30826265288144

-1.50000000000000
1.87500000000000
0.83852549156242
0.54490689600402
1.42658477444273

-2.30826265288144

-1.50000000000000
1.87500000000000
0.83852549156242
0.54490689600402
1.42658477444273

-2.30826265288144

-1.50000000000000
1.87500000000000
0.83852549156242

-0.54490689600402

-1.42658477444273
2.30826265288144

(110100000000)
(001111000000)
(000110101101)
(000100010111)
(001011011010)
(101101100010)
(110100000000)
(001111000000)
(000110101101)
(000100010111)
(001011011010)
(101101100010)
(110100000000)
(001111000000)
(000110101101)
(000100010111)
(001011011010)
(101101100010)
(110100000000)
(001111000000)
(000110101101)
(111011101001)
(110100100110)
(010010011110)

-1.500000000
1.875000000
0.837890625
0.544921875
1.425781250

-2.308593750

-1.500000000
1.875000000
0.837890625
0.544921875
1.425781250

-2.308593750

-1.500000000
1.875000000
0.837890625
0.544921875
1.425781250

-2.308593750

-1.500000000
1.875000000
0.837890625

-0.544921875

-1.425781250
2.308593750
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Table 11: Twiddle factors in TF2 (imaginary side)..

No Theoretical Value Stored Value
12 Bits Decimal
MSB LSB

0 -1.50000000000000 (110100000000) -1.500000000
1 1.87500000000000 (001111000000) 1.875000000
2 0.83852549156242 (000110101101) 0.837890625
3 -0.54490689600402 (111011101001) -0.544921875
4 -1.42658477444273 (110100100110) -1.425781250
5 2.30826265288144 (010010011110) 2.308593750
6 -1.50000000000000 (110100000000) -1.500000000
7 1.87500000000000 (001111000000) 1.875000000
8 0.83852549156242 (000110101101) 0.837890625
9 -0.54490689600402 (111011101001) -0.544921875
10 -1.42658477444273 (110100100110) -1.425781250
11 2.30826265288144 (010010011110) 2.308593750
12 -1.50000000000000 (110100000000) -1.500000000
13 1.87500000000000 (001111000000) 1.875000000
14  0.83852549156242 (000110101101) 0.837890625
15 -0.54490689600402 (111011101001) -0.544921875
16 -1.42658477444273 (110100100110) -1.425781250
17 2.30826265288144 (010010011110)  2.308593750
1S 1.50000000000000 (001100000000) 1.500000000
19 -1.87500000000000 (110001000000) -1.875000000
20 -0.83852549156242  (111001010011) -0.837890625
21 -0.54490689600402 (111011101001) -0.544921875
22 -1.42658477444273 (110100100110) -1.425781250
23 2.30526265288144  (010010011110)  2.308593750
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Table 12: Twiddle factors in TF3 (real side)..

No Theoretical Value Stored Value
12 Bits Decimal
MSB LSB
0 -0.86602540378444 (111001000101) -0.865234375
1 1.08253175473055 (001000101010) 1.082031250
2 0.48412291827593 (000011111000) 0.484375000
3 0.31460214309120 (000010100001)  0.314453125
4 0.82363910354633 (000110100110)  0.824218750
5 -1.33267606400146 (110101010110) -1.332031250
6 -0.86602540378444 (111001000101) -0.865234375
7 1.08253175473055 (001000101010) 1.082031250
8 0.48412291827593 (000011111000) 0.484375000
9 0.31460214309120 (000010100001) 0.314453125
10 0.82363910354633 (000110100110) 0.824218750
11 -1.33267606400146 (110101010110) -1.332031250
12 -0.86602540378444 (111001000101) -0.865234375
13 1.08253175473055 (001000101010) 1.082031250
14 0.48412291827593  (000011111000) 0.484375000
15 0.31460214309120 (000010100001) 0.314453125
16 0.82363910354633 (000110100110) 0.824218750
17 -1.33267606400146 (110101010110) -1.332031250
18 -0.86602540378444 (111001000101) -0.865234375
19 1.08253175473055 (001000101010) 1.082031250
20 0.48412291827593  (000011111000) 0.484375000
21 -0.31460214309120 (111101011111) -0.314453125
22 -0.82363910354633 (111001011010) -0.824218750
23 1.33267606400146 (001010101010)  1.332031250
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Table 13: Twiddle factors in TF3 (imaginary side)..

No Theoretical Value Stored Value
12 Bits Decimal
MSB LSB
0 0.36602540378444 (000110111011) 0.865234375
1 -1.08253175473055 (110111010110) -1.082031250
2 -0.48412291827593 (111100001000) -0.484375000
3 0.31460214309120 (000010100001) 0.314453125
4 0.82363910354633 (000110100110) 0.824218750
5 -1.33267606400146 (110101010110) -1.332031250
6 0.86602540378444 (000110111011) 0.865234375
7 -1.08253175473055 (110111010110) -1.082031250
8 -0.48412291827593 (111100001000) -0.484375000
9 0.31460214309120 (000010100001) 0.314453125
10 0.82363910354633 (000110100110)  0.824218750
11 -1.33267606400146 (110101010110) -1.332031250
12 0.86602540378444 (000110111011) 0.865234375
13 -1.08253175473055 (110111010110) -1.082031250
14 -0.48412291827593 (111100001000) -0.484375000
15 0.31460214309120 (000010100001) 0.314453125
16 0.82363910354633  (000110100110) 0.824218750
17 -1.33267606400146  (110101010110) -1.332031250
18 -0.86602540378444  (111001000101) -0.865234375
19  1.08253175473055 (001000101010)  1.082031250
20 0.48412291827593  (000011111000)  0.484375000
21 0.31460214309120 (000010100001)  0.314453125
22 0.82363910354633 (000110100110)  0.824218750
23 -1.33267606400146  (110101010110) -1.332031250
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2-input Nor

2-input Xor

3-innut Nand

3-input Xor

Flip-flop

20-point
transformation

APPENDIX

C.0 LOGIC SYMBOLS

A
C,
A S
B
CI CO
P 0 "~‘.‘
: [
—'-.Tc1 K
---- '---"
ooy ..\.
- —O—DO—‘—1
..... '--‘-.

Ol '..‘
‘s.. ."'
N
0 ..-.--. .-.~.h.’,
-ﬁ_‘y.—’_’ ®
- -""
aL B 2

Half adder

Full adder

2-to-1 Mux, non-inverting

2-to-1 Mux, inverting

3-to-1 Mux, inverting

4-t0-1 Mux, non-inverting

Addition

Subtraction

Figure 25: Logic symbols used throughout this document.
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